123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 |
- /***************************************************************************************************
- * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights
- *reserved. SPDX-License-Identifier: BSD-3-Clause
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice,
- *this list of conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- *
- * 3. Neither the name of the copyright holder nor the names of its
- * contributors may be used to endorse or promote products derived from
- * this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- *ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
- *LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- *CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- *SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- *INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- *CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- *ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- *POSSIBILITY OF SUCH DAMAGE.
- *
- **************************************************************************************************/
- //
- // This file is a modified excerpt of
- // include/cutlass/epilogue/fusion/visitor_load.hpp from
- // https://github.com/NVIDIA/cutlass v3.5.0
- // It has been modified to support either
- // row/column or scalar broadcasting where the tensor being loaded from is
- // always passed in via a device pointer. This lets one compiled kernel handle
- // all cases of per-tensor or per-channel/per-token quantization.
- //
- // This interface also allows the scales to be passed in as tensors that
- // consistently reside on the device, which avoids an issue with a previous
- // implementation where scalars needed to be on the CPU since they
- // were passed in via float values. This created a potential performance hazard
- // if scales were initially on the device, and caused torch.compile graph
- // breaks when moving scales to the CPU.
- //
- #pragma once
- // Turn off clang-format for the entire file to keep it close to upstream
- // clang-format off
- #include "cutlass/epilogue/threadblock/fusion/visitor_2x.hpp"
- #include "cute/tensor.hpp"
- namespace cutlass::epilogue::threadblock {
- using namespace cute;
- using namespace detail;
- template<
- class ThreadMap,
- class Element,
- class StrideMNL
- >
- struct VisitorRowOrScalarBroadcast {
- // This struct has been modified to have a bool indicating that ptr_row is a
- // scalar that must be broadcast.
- struct Arguments {
- Element const* ptr_row = nullptr;
- bool row_broadcast = true;
- StrideMNL dRow = {};
- };
- using Params = Arguments;
- template <class ProblemShape>
- static constexpr Params
- to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) {
- return args;
- }
- template <class ProblemShape>
- static size_t
- get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) {
- return 0;
- }
- struct SharedStorage {};
- // Global load type
- static int constexpr vec_bits = ThreadMap::kElementsPerAccess * sizeof_bits<Element>::value;
- using VecType = uint_bit_t<cute::min(128, vec_bits)>;
- static int constexpr VecLength = sizeof(VecType) / sizeof(Element);
- CUTLASS_HOST_DEVICE
- VisitorRowOrScalarBroadcast() { }
- CUTLASS_HOST_DEVICE
- VisitorRowOrScalarBroadcast(Params const& params, SharedStorage const& shared_storage)
- : params_ptr(¶ms) { }
- Params const* params_ptr;
- template <class GTensor, class RTensor, class CTensor, class ProblemShape>
- struct Callbacks : EmptyCallbacks {
- CUTLASS_DEVICE
- Callbacks(
- GTensor&& tC_gRow,
- RTensor&& tC_rRow,
- CTensor&& tC_cRow,
- ProblemShape problem_shape,
- Params const* params_ptr
- ):
- tC_gRow(cute::forward<GTensor>(tC_gRow)),
- tC_rRow(cute::forward<RTensor>(tC_rRow)),
- tC_cRow(cute::forward<CTensor>(tC_cRow)),
- n(get<1>(problem_shape)),
- params_ptr(params_ptr) { }
- GTensor tC_gRow;
- RTensor tC_rRow;
- CTensor tC_cRow;
- Params const* params_ptr;
- int n;
- // This function is modified from VisitorRowBroadcast
- CUTLASS_DEVICE void
- begin_epilogue() {
- clear(tC_rRow);
- auto src_v = filter(tC_gRow);
- auto coord_v = filter(tC_cRow);
- auto dst_v = filter(tC_rRow);
- if (params_ptr->row_broadcast) {
- // In this case we are loading from a row vector and broadcasting
- CUTLASS_PRAGMA_UNROLL
- for (int i = 0; i < size(src_v); ++i) {
- bool guard = get<1>(coord_v(i)) < n;
- cutlass::arch::global_load<VecType, sizeof(VecType)>(
- dst_v(i), (void const*)&src_v(i), guard);
- }
- } else {
- // In this case we are loading from a scalar and broadcasting
- VecType filled_vec;
- CUTLASS_PRAGMA_UNROLL
- for (int i = 0; i < VecLength; i++) {
- reinterpret_cast<Element*>(&filled_vec)[i] = *(params_ptr->ptr_row);
- }
- CUTLASS_PRAGMA_UNROLL
- for (int i = 0; i < size(src_v); ++i) {
- if (get<1>(coord_v(i)) < n) {
- dst_v(i) = filled_vec;
- }
- }
- }
- }
- template <class ElementAccumulator, int FragmentSize>
- CUTLASS_DEVICE auto // returns an Array
- visit(int iter_idx, int row_idx, int column_idx, int frg_idx,
- Array<ElementAccumulator, FragmentSize> const& frg_acc) {
- Tensor rRow_frg = recast<Array<Element, FragmentSize>>(coalesce(tC_rRow));
- return rRow_frg(column_idx);
- }
- };
- template <class ProblemShape>
- CUTLASS_DEVICE auto
- get_callbacks(
- gemm::GemmCoord threadblock_tile_offset,
- int thread_idx,
- ProblemShape problem_shape
- ) {
- Tensor mRow = make_tensor(
- make_gmem_ptr(params_ptr->ptr_row),
- problem_shape,
- params_ptr->dRow);
- // VECTOR, FRAGMENT_COLUMN
- Tensor tC_gRow = recast<VecType>(
- ThreadMap::partition(mRow, thread_idx, threadblock_tile_offset)
- )(_,_,_0{},_0{},_0{},_0{});
- Tensor tC_rRow = make_tensor_like(tC_gRow);
- // Generate the pred tensor
- Tensor cRow = make_identity_tensor(mRow.shape());
- Tensor tC_cRow = outer_partition(
- ThreadMap::partition(cRow, thread_idx, threadblock_tile_offset)(_,_,_0{},_0{},_0{},_0{}),
- Shape<Int<VecLength>>{},
- (_0{})
- );
- return Callbacks<
- decltype(tC_gRow), decltype(tC_rRow),
- decltype(tC_cRow), ProblemShape>(
- cute::move(tC_gRow),
- cute::move(tC_rRow),
- cute::move(tC_cRow),
- problem_shape,
- params_ptr
- );
- }
- };
- /////////////////////////////////////////////////////////////////////////////////////////////////
- // Column vector broadcast
- template<
- class ThreadMap,
- class Element,
- class StrideMNL = Stride<_1,_0,_0>
- >
- struct VisitorColOrScalarBroadcast {
- // This struct has been modified to have a bool indicating that ptr_col is a
- // scalar that must be broadcast.
- struct Arguments {
- Element const* ptr_col = nullptr;
- bool col_broadcast = true;
- StrideMNL dCol = {};
- };
- using Params = Arguments;
- template <class ProblemShape>
- static constexpr Params
- to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) {
- return args;
- }
- template <class ProblemShape>
- static size_t
- get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) {
- return 0;
- }
- struct SharedStorage { };
- CUTLASS_HOST_DEVICE
- VisitorColOrScalarBroadcast() { }
- CUTLASS_HOST_DEVICE
- VisitorColOrScalarBroadcast(Params const& params, SharedStorage const& shared_storage)
- : params_ptr(¶ms) { }
- Params const* params_ptr;
- template <class GTensor, class RTensor, class CTensor, class ProblemShape>
- struct Callbacks : EmptyCallbacks {
- CUTLASS_DEVICE
- Callbacks(
- GTensor&& tC_gCol,
- RTensor&& tC_rCol,
- CTensor&& tC_cCol,
- ProblemShape problem_shape,
- Params const* params_ptr
- ):
- tC_gCol(cute::forward<GTensor>(tC_gCol)),
- tC_rCol(cute::forward<RTensor>(tC_rCol)),
- tC_cCol(cute::forward<CTensor>(tC_cCol)),
- m(get<0>(problem_shape)),
- params_ptr(params_ptr) { }
- GTensor tC_gCol;
- RTensor tC_rCol;
- CTensor tC_cCol;
- Params const* params_ptr;
- int m;
- // This function is modified from VisitorColBroadcast
- CUTLASS_DEVICE void
- begin_epilogue() {
- clear(tC_rCol);
- Tensor pred = make_tensor<bool>(shape(tC_gCol));
- CUTLASS_PRAGMA_UNROLL
- for (int i = 0; i < size(pred); ++i) {
- pred(i) = get<0>(tC_cCol(i)) < m;
- }
- if (params_ptr->col_broadcast) {
- // In this case we are loading from a column vector and broadcasting
- copy_if(pred, tC_gCol, tC_rCol);
- } else {
- // In this case we are loading from a scalar and broadcasting
- auto dst_v = filter(tC_rCol);
- CUTLASS_PRAGMA_UNROLL
- for (int i = 0; i < size(dst_v); ++i) {
- if (pred(i)) {
- dst_v(i) = *(params_ptr->ptr_col);
- }
- }
- }
- }
- template <class ElementAccumulator, int FragmentSize>
- CUTLASS_DEVICE auto // returns an Array
- visit(int iter_idx, int row_idx, int column_idx, int frg_idx,
- Array<ElementAccumulator, FragmentSize> const& frg_acc) {
- Array<Element, FragmentSize> frg_col;
- frg_col.fill(tC_rCol(row_idx,iter_idx));
- return frg_col;
- }
- };
- template <class ProblemShape>
- CUTLASS_DEVICE auto
- get_callbacks(
- gemm::GemmCoord threadblock_tile_offset,
- int thread_idx,
- ProblemShape problem_shape
- ) {
- Tensor mCol = make_tensor(
- make_gmem_ptr(params_ptr->ptr_col),
- problem_shape,
- params_ptr->dCol);
- // VECTOR, FRAGMENT_COLUMN, FRAGMENT_ROW, ITERATION_ROW, ITERATION_GROUP, ITERATION_CLUSTER
- Tensor tC_gCol = group_modes<1,4>(
- ThreadMap::partition(mCol, thread_idx, threadblock_tile_offset)(_0{},_0{},_,_,_,_));
- Tensor tC_rCol = make_tensor_like(tC_gCol);
- // Generate the pred tensor
- Tensor cCol = make_identity_tensor(mCol.shape());
- Tensor tC_cCol = group_modes<1,4>(
- ThreadMap::partition(cCol, thread_idx, threadblock_tile_offset)(_0{},_0{},_,_,_,_));
- return Callbacks<
- decltype(tC_gCol), decltype(tC_rCol),
- decltype(tC_cCol), ProblemShape>(
- cute::move(tC_gCol),
- cute::move(tC_rCol),
- cute::move(tC_cCol),
- problem_shape,
- params_ptr
- );
- }
- };
- }
|