123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- #include "cache.h"
- #include "ops.h"
- #include "registration.h"
- #include <torch/library.h>
- TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
- // Aphrodite custom ops
- // Attention ops
- // Compute the attention between an input query and the cached keys/values
- // using PagedAttention.
- ops.def(
- "paged_attention_v1("
- " Tensor! out, Tensor query, Tensor key_cache,"
- " Tensor value_cache, int num_kv_heads, float scale,"
- " Tensor block_tables, Tensor seq_lens, int block_size,"
- " int max_seq_len, Tensor? alibi_slopes,"
- " str kv_cache_dtype, float k_scale, float v_scale,"
- " int tp_rank, int blocksparse_local_blocks,"
- " int blocksparse_vert_stride, int blocksparse_block_size,"
- " int blocksparse_head_sliding_step) -> ()");
- ops.impl("paged_attention_v1", torch::kCPU, &paged_attention_v1);
- // PagedAttention V2.
- ops.def(
- "paged_attention_v2("
- " Tensor! out, Tensor exp_sums, Tensor max_logits,"
- " Tensor tmp_out, Tensor query, Tensor key_cache,"
- " Tensor value_cache, int num_kv_heads, float scale,"
- " Tensor block_tables, Tensor seq_lens, int block_size,"
- " int max_seq_len, Tensor? alibi_slopes,"
- " str kv_cache_dtype, float k_scale, float v_scale,"
- " int tp_rank, int blocksparse_local_blocks,"
- " int blocksparse_vert_stride, int blocksparse_block_size,"
- " int blocksparse_head_sliding_step) -> ()");
- ops.impl("paged_attention_v2", torch::kCPU, &paged_attention_v2);
- // Activation ops
- // Activation function used in SwiGLU.
- ops.def("silu_and_mul(Tensor! out, Tensor input) -> ()");
- ops.impl("silu_and_mul", torch::kCPU, &silu_and_mul);
- // Activation function used in GeGLU with `none` approximation.
- ops.def("gelu_and_mul(Tensor! out, Tensor input) -> ()");
- ops.impl("gelu_and_mul", torch::kCPU, &gelu_and_mul);
- // Activation function used in GeGLU with `tanh` approximation.
- ops.def("gelu_tanh_and_mul(Tensor! out, Tensor input) -> ()");
- ops.impl("gelu_tanh_and_mul", torch::kCPU, &gelu_tanh_and_mul);
- // GELU implementation used in GPT-2.
- ops.def("gelu_new(Tensor! out, Tensor input) -> ()");
- ops.impl("gelu_new", torch::kCPU, &gelu_new);
- // Approximate GELU implementation.
- ops.def("gelu_fast(Tensor! out, Tensor input) -> ()");
- ops.impl("gelu_fast", torch::kCPU, &gelu_fast);
- // Quick GELU implementation.
- ops.def("gelu_quick(Tensor! out, Tensor input) -> ()");
- ops.impl("gelu_quick", torch::kCPU, &gelu_quick);
- // Layernorm
- // Apply Root Mean Square (RMS) Normalization to the input tensor.
- ops.def(
- "rms_norm(Tensor! out, Tensor input, Tensor weight, float epsilon) -> "
- "()");
- ops.impl("rms_norm", torch::kCPU, &rms_norm);
- // In-place fused Add and RMS Normalization.
- ops.def(
- "fused_add_rms_norm(Tensor! input, Tensor! residual, Tensor weight, "
- "float epsilon) -> ()");
- ops.impl("fused_add_rms_norm", torch::kCPU, &fused_add_rms_norm);
- // Rotary embedding
- // Apply GPT-NeoX or GPT-J style rotary embedding to query and key.
- ops.def(
- "rotary_embedding(Tensor positions, Tensor! query,"
- " Tensor! key, int head_size,"
- " Tensor cos_sin_cache, bool is_neox) -> ()");
- ops.impl("rotary_embedding", torch::kCPU, &rotary_embedding);
- }
- TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
- // Cache ops
- // Swap in (out) the cache blocks from src to dst.
- cache_ops.def(
- "swap_blocks(Tensor src, Tensor! dst, Tensor block_mapping) -> ()");
- cache_ops.impl("swap_blocks", torch::kCPU, &swap_blocks);
- // Copy the cache blocks from src to dst.
- cache_ops.def(
- "copy_blocks(Tensor[]! key_caches, Tensor[]! value_caches, Tensor "
- "block_mapping) -> ()");
- cache_ops.impl("copy_blocks", torch::kCPU, ©_blocks);
- // Reshape the key and value tensors and cache them.
- cache_ops.def(
- "reshape_and_cache(Tensor key, Tensor value,"
- " Tensor! key_cache, Tensor! value_cache,"
- " Tensor slot_mapping,"
- " str kv_cache_dtype,"
- " float k_scale, float v_scale) -> ()");
- cache_ops.impl("reshape_and_cache", torch::kCPU, &reshape_and_cache);
- }
- REGISTER_EXTENSION(TORCH_EXTENSION_NAME)
|