AlpinDale d63690a0df chore: add fp8 examples | 5 kuukautta sitten | |
---|---|---|
.. | ||
README.md | 5 kuukautta sitten | |
quantize.py | 5 kuukautta sitten |
quantize.py
: NVIDIA Quantization utilities using AMMO, ported from TensorRT-LLM:
https://github.com/NVIDIA/TensorRT-LLM/blob/main/examples/quantization/quantize.py
pip install --no-cache-dir --extra-index-url https://pypi.nvidia.com nvidia-ammo
https://developer.nvidia.com/downloads/assets/cuda/files/nvidia-ammo/nvidia_ammo-0.5.0.tar.gz
https://developer.nvidia.com/downloads/assets/cuda/files/nvidia-ammo/nvidia_ammo-0.7.1.tar.gz
python quantize.py --model_dir ./ll2-7b --dtype float16 --qformat fp8 --kv_cache_dtype fp8 --output_dir ./ll2_7b_fp8 --calib_size 512 --tp_size 1
Outputs: model structure, quantized model & parameters (with scaling factors) are in JSON and Safetensors (npz is generated only for the reference)
# ll ./ll2_7b_fp8/
total 19998244
drwxr-xr-x 2 root root 4096 Feb 7 01:08 ./
drwxrwxr-x 8 1060 1061 4096 Feb 7 01:08 ../
-rw-r--r-- 1 root root 176411 Feb 7 01:08 llama_tp1.json
-rw-r--r-- 1 root root 13477087480 Feb 7 01:09 llama_tp1_rank0.npz
-rw-r--r-- 1 root root 7000893272 Feb 7 01:08 rank0.safetensors
#