mlp_speculator_worker.py 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687
  1. from typing import List, Optional, Set, Tuple
  2. import torch
  3. from aphrodite.common.sequence import (ExecuteModelRequest, SamplerOutput,
  4. SequenceGroupMetadata)
  5. from aphrodite.modeling import SamplingMetadata
  6. from aphrodite.spec_decode.multi_step_worker import MultiStepWorker
  7. from aphrodite.spec_decode.proposer_worker_base import NonLLMProposerWorkerBase
  8. class MLPSpeculatorWorker(NonLLMProposerWorkerBase, MultiStepWorker):
  9. """Worker for MLPSpeculator models.
  10. Not currently compatible with LoRA or chunked prefill.
  11. """
  12. @torch.inference_mode()
  13. def sampler_output(
  14. self,
  15. execute_model_req: ExecuteModelRequest,
  16. sample_len: int,
  17. # Unused parameter. MLPSpeculatorWorker does not use the KV Cache and
  18. # therefore does not need this parameter.
  19. seq_ids_with_bonus_token_in_last_step: Set[int],
  20. ) -> Tuple[List[SamplerOutput], bool]:
  21. """Run the model forward pass to generate sample_len future tokens.
  22. Returns the list of sampler output, one per layer, along with indicator
  23. of whether torch tensor in sampler output need to be transposed in
  24. latter sampler_output_to_torch logic.
  25. For mlp spec worker, this indicator shall be True.
  26. """
  27. self._raise_if_unsupported(execute_model_req)
  28. seq_group_metadata_list = execute_model_req.seq_group_metadata_list
  29. (input_tokens, seq_lens,
  30. query_lens) = self._prepare_input_tensors(seq_group_metadata_list)
  31. sampling_metadata = SamplingMetadata.prepare(
  32. seq_group_metadata_list, seq_lens, query_lens, self.device,
  33. self.model_runner.pin_memory)
  34. model_outputs = self.model_runner.model.generate_proposals(
  35. input_ids=input_tokens,
  36. previous_hidden_states=execute_model_req.previous_hidden_states.
  37. hidden_states,
  38. num_predict_tokens=sample_len,
  39. sampling_metadata=sampling_metadata)
  40. assert len(model_outputs) == sample_len
  41. return model_outputs, True
  42. def _prepare_input_tensors(
  43. self,
  44. seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
  45. ) -> Tuple[torch.Tensor, List[int], List[int]]:
  46. if not seq_group_metadata_list:
  47. return torch.empty(0, device=self.device), [], []
  48. input_tokens: List[int] = []
  49. seq_lens: List[int] = []
  50. query_lens: List[int] = []
  51. for seq_group_metadata in seq_group_metadata_list:
  52. is_prompt = seq_group_metadata.is_prompt
  53. for seq_data in seq_group_metadata.seq_data.values():
  54. seq_data_len = seq_data.get_len()
  55. if is_prompt:
  56. context_len = seq_data.get_num_computed_tokens()
  57. seq_len = min(
  58. seq_data_len,
  59. context_len + seq_group_metadata.token_chunk_size)
  60. tokens = seq_data.get_token_ids()[context_len:seq_len]
  61. seq_lens.append(seq_len)
  62. input_tokens.extend(tokens)
  63. query_lens.append(seq_len - context_len)
  64. else:
  65. seq_lens.append(seq_data_len)
  66. input_tokens.append(seq_data.get_last_token_id())
  67. query_lens.append(1)
  68. input_tokens_tensor = torch.tensor(input_tokens,
  69. dtype=torch.long,
  70. device=self.device)
  71. return input_tokens_tensor, seq_lens, query_lens