123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 |
- from typing import List, Optional, Tuple, Type
- import pytest
- import torch
- import torch.types
- from transformers import BatchEncoding
- from aphrodite.common.sequence import SampleLogprobs
- from aphrodite.multimodal.utils import rescale_image_size
- from ..conftest import IMAGE_ASSETS, AphroditeRunner, HfRunner, _ImageAssets
- from .utils import check_logprobs_close
- pytestmark = pytest.mark.vlm
- # The image token is placed before "user" on purpose so that the test can pass
- HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
- "stop_sign":
- "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" \
- "(<image>./</image>)\nWhat's the content of the image?<|eot_id|>" \
- "<|start_header_id|>assistant<|end_header_id|>\n\n", # noqa: E501
- "cherry_blossom":
- "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" \
- "(<image>./</image>)\nWhat is the season?<|eot_id|>" \
- "<|start_header_id|>assistant<|end_header_id|>\n\n",
- })
- models = ["openbmb/MiniCPM-Llama3-V-2_5"]
- def _wrap_inputs(hf_inputs: BatchEncoding) -> BatchEncoding:
- return BatchEncoding({"model_inputs": hf_inputs})
- def trunc_hf_output(hf_output: Tuple[List[int], str,
- Optional[SampleLogprobs]]):
- output_ids, output_str, out_logprobs = hf_output
- if output_str.endswith("<|eot_id|>"):
- output_str = output_str.split("<|eot_id|>")[0]
- return output_ids, output_str, out_logprobs
- target_dtype = "half"
- def run_test(
- hf_runner: Type[HfRunner],
- aphrodite_runner: Type[AphroditeRunner],
- image_assets: _ImageAssets,
- model: str,
- *,
- size_factors: List[float],
- dtype: str,
- max_tokens: int,
- num_logprobs: int,
- tensor_parallel_size: int,
- distributed_executor_backend: Optional[str] = None,
- ):
- """Inference result should be the same between hf and aphrodite.
- All the image fixtures for the test is under tests/images.
- For huggingface runner, we provide the PIL images as input.
- For aphrodite runner, we provide MultiModalDataDict objects
- and corresponding MultiModalConfig as input.
- Note, the text input is also adjusted to abide by aphrodite contract.
- The text output is sanitized to be able to compare with hf.
- """
- images = [asset.pil_image for asset in image_assets]
- inputs_per_image = [(
- [prompt for _ in size_factors],
- [rescale_image_size(image, factor) for factor in size_factors],
- ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
- # NOTE: take care of the order. run Aphrodite first, and then run HF.
- # Aphrodite needs a fresh new process without cuda initialization.
- # if we run HF first, the cuda initialization will be done and it
- # will hurt multiprocessing backend with fork method (the default method).
- # max_model_len should be greater than image_feature_size
- with aphrodite_runner(model,
- max_model_len=4096,
- max_num_seqs=1,
- dtype=dtype,
- tensor_parallel_size=tensor_parallel_size,
- distributed_executor_backend=distributed_executor_backend,
- enforce_eager=True) as aphrodite_model:
- tokenizer = aphrodite_model.model.get_tokenizer()
- stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
- aphrodite_outputs_per_image = [
- aphrodite_model.generate_greedy_logprobs(prompts,
- max_tokens,
- num_logprobs=num_logprobs,
- images=images,
- stop_token_ids=stop_token_ids)
- for prompts, images in inputs_per_image
- ]
- hf_model = hf_runner(model, dtype=dtype, postprocess_inputs=_wrap_inputs)
- with hf_model, torch.no_grad():
- hf_outputs_per_image = [
- hf_model.generate_greedy_logprobs_limit(prompts,
- max_tokens,
- num_logprobs=num_logprobs,
- images=images,
- tokenizer=tokenizer)
- for prompts, images in inputs_per_image
- ]
- for hf_outputs, aphrodite_outputs in zip(hf_outputs_per_image,
- aphrodite_outputs_per_image):
- check_logprobs_close(
- outputs_0_lst=[
- trunc_hf_output(hf_output) for hf_output in hf_outputs
- ],
- outputs_1_lst=aphrodite_outputs,
- name_0="hf",
- name_1="aphrodite",
- )
- @pytest.mark.parametrize("model", models)
- @pytest.mark.parametrize(
- "size_factors",
- [
- # No image
- [],
- # Single-scale
- [1.0],
- # Single-scale, batched
- [1.0, 1.0, 1.0],
- # Multi-scale
- [0.25, 0.5, 1.0],
- ],
- )
- @pytest.mark.parametrize("dtype", [target_dtype])
- @pytest.mark.parametrize("max_tokens", [128])
- @pytest.mark.parametrize("num_logprobs", [5])
- def test_models(hf_runner, aphrodite_runner, image_assets, model, size_factors,
- dtype: str, max_tokens: int, num_logprobs: int) -> None:
- run_test(
- hf_runner,
- aphrodite_runner,
- image_assets,
- model,
- size_factors=size_factors,
- dtype=dtype,
- max_tokens=max_tokens,
- num_logprobs=num_logprobs,
- tensor_parallel_size=1,
- )
- HF_MULTIIMAGE_IMAGE_PROMPT = \
- "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" \
- "(<image>./</image>)\n(<image>./</image>)\n" \
- "Describe these images.<|eot_id|>" \
- "<|start_header_id|>assistant<|end_header_id|>\n\n"
- def run_multi_image_test(
- hf_runner: Type[HfRunner],
- aphrodite_runner: Type[AphroditeRunner],
- image_assets: _ImageAssets,
- model: str,
- *,
- size_factors: List[float],
- dtype: str,
- max_tokens: int,
- num_logprobs: int,
- tensor_parallel_size: int,
- distributed_executor_backend: Optional[str] = None,
- ):
- """Inference result should be the same between hf and aphrodite.
- All the image fixtures for the test is under tests/images.
- For huggingface runner, we provide the PIL images as input.
- For aphrodite runner, we provide MultiModalDataDict objects
- and corresponding MultiModalConfig as input.
- Note, the text input is also adjusted to abide by aphrodite contract.
- The text output is sanitized to be able to compare with hf.
- """
- images = [asset.pil_image for asset in image_assets]
- inputs_per_case = [
- ([HF_MULTIIMAGE_IMAGE_PROMPT for _ in size_factors],
- [[rescale_image_size(image, factor) for image in images]
- for factor in size_factors])
- ]
- # NOTE: take care of the order. run Aphrodite first, and then run HF.
- # Aphrodite needs a fresh new process without cuda initialization.
- # if we run HF first, the cuda initialization will be done and it
- # will hurt multiprocessing backend with fork method (the default method).
- # max_model_len should be greater than image_feature_size
- with aphrodite_runner(model,
- max_model_len=4096,
- max_num_seqs=1,
- limit_mm_per_prompt={"image": len(images)},
- dtype=dtype,
- tensor_parallel_size=tensor_parallel_size,
- distributed_executor_backend=distributed_executor_backend,
- enforce_eager=True) as aphrodite_model:
- tokenizer = aphrodite_model.model.get_tokenizer()
- stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
- aphrodite_outputs_per_case = [
- aphrodite_model.generate_greedy_logprobs(prompts,
- max_tokens,
- num_logprobs=num_logprobs,
- images=images,
- stop_token_ids=stop_token_ids)
- for prompts, images in inputs_per_case
- ]
- hf_model = hf_runner(model, dtype=dtype, postprocess_inputs=_wrap_inputs)
- with hf_model, torch.no_grad():
- hf_outputs_per_case = [
- hf_model.generate_greedy_logprobs_limit(prompts,
- max_tokens,
- num_logprobs=num_logprobs,
- images=images,
- tokenizer=tokenizer)
- for prompts, images in inputs_per_case
- ]
- for hf_outputs, aphrodite_outputs in zip(hf_outputs_per_case,
- aphrodite_outputs_per_case):
- check_logprobs_close(
- outputs_0_lst=[
- trunc_hf_output(hf_output) for hf_output in hf_outputs
- ],
- outputs_1_lst=aphrodite_outputs,
- name_0="hf",
- name_1="aphrodite",
- )
- @pytest.mark.parametrize("model", models)
- @pytest.mark.parametrize(
- "size_factors",
- [
- # No image
- [],
- # Single-scale
- [1.0],
- # Single-scale, batched
- [1.0, 1.0, 1.0],
- # Multi-scale
- [0.25, 0.5, 1.0],
- ],
- )
- @pytest.mark.parametrize("dtype", [target_dtype])
- @pytest.mark.parametrize("max_tokens", [128])
- @pytest.mark.parametrize("num_logprobs", [5])
- def test_multi_images_models(hf_runner, aphrodite_runner, image_assets, model,
- size_factors, dtype: str, max_tokens: int,
- num_logprobs: int) -> None:
- run_multi_image_test(
- hf_runner,
- aphrodite_runner,
- image_assets,
- model,
- size_factors=size_factors,
- dtype=dtype,
- max_tokens=max_tokens,
- num_logprobs=num_logprobs,
- tensor_parallel_size=1,
- )
|