123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336 |
- # coding=utf-8
- # adapted from https://github.com/huggingface/transformers/blob/v4.39.3/src/transformers/models/persimmon/modeling_persimmon.py
- # Copyright 2023 The PygmalionAI team.
- # Copyright 2023 The vLLM team.
- # Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
- #
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
- # and OPT implementations in this library. It has been modified from its
- # original forms to accommodate minor architectural differences compared
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Inference-only persimmon model compatible with HuggingFace weights."""
- from typing import Iterable, List, Optional, Tuple
- import torch
- from torch import nn
- from transformers import PersimmonConfig
- from transformers.activations import ReLUSquaredActivation
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.config import CacheConfig
- from aphrodite.common.sequence import IntermediateTensors, SamplerOutput
- from aphrodite.distributed import get_tensor_model_parallel_world_size
- from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
- QKVParallelLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.rotary_embedding import get_rope
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- ParallelLMHead, VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.quantization.base_config import QuantizationConfig
- class PersimmonMLP(nn.Module):
- def __init__(self,
- config: PersimmonConfig,
- quant_config: Optional[QuantizationConfig] = None):
- super().__init__()
- self.dense_h_to_4h = ColumnParallelLinear(config.hidden_size,
- config.intermediate_size,
- quant_config=quant_config)
- self.dense_4h_to_h = RowParallelLinear(config.intermediate_size,
- config.hidden_size,
- quant_config=quant_config)
- self.act = ReLUSquaredActivation()
- def forward(self, hidden_states) -> torch.Tensor:
- hidden_states, _ = self.dense_h_to_4h(hidden_states)
- hidden_states = self.act(hidden_states)
- hidden_states, _ = self.dense_4h_to_h(hidden_states)
- return hidden_states
- class PersimmonAttention(nn.Module):
- def __init__(self,
- config: PersimmonConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None):
- super().__init__()
- self.config = config
- tensor_parallel_world_size = get_tensor_model_parallel_world_size()
- self.hidden_size = config.hidden_size
- self.total_num_heads = config.num_attention_heads
- self.num_heads = self.total_num_heads // tensor_parallel_world_size
- self.head_dim = self.hidden_size // self.total_num_heads
- self.max_position_embeddings = config.max_position_embeddings
- self.rope_theta = config.rope_theta
- self.partial_rotary_factor = config.partial_rotary_factor
- self.is_causal = True
- assert (self.head_dim * self.total_num_heads) == self.hidden_size
- assert self.total_num_heads % tensor_parallel_world_size == 0
- self.query_key_value = QKVParallelLinear(
- self.hidden_size,
- self.head_dim,
- self.total_num_heads,
- bias=True,
- quant_config=quant_config,
- )
- self.dense = RowParallelLinear(
- self.num_heads * self.head_dim,
- self.hidden_size,
- bias=True,
- quant_config=quant_config,
- )
- self.is_qk_layernorm = config.qk_layernorm
- if self.is_qk_layernorm:
- self.q_layernorm = nn.LayerNorm(self.head_dim)
- self.k_layernorm = nn.LayerNorm(self.head_dim)
- self.rotary_emb = get_rope(
- self.head_dim,
- rotary_dim=int(self.partial_rotary_factor * self.head_dim),
- max_position=self.max_position_embeddings,
- base=self.rope_theta,
- )
- self.scaling = self.head_dim**-0.5
- self.attn = Attention(self.num_heads,
- self.head_dim,
- scale=self.scaling,
- cache_config=cache_config,
- quant_config=quant_config)
- def _split_heads(self, x: torch.Tensor) -> torch.Tensor:
- # [seq_length, hidden_size] -> [seq_length, num_heads, head_dim]
- seq_length = x.shape[0]
- return x.view(seq_length, self.num_heads, self.head_dim)
- def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
- # [seq_length, num_heads, head_dim] -> [seq_length, hidden_size]
- seq_length = x.shape[0]
- return x.view(seq_length, self.num_heads * self.head_dim)
- def forward(
- self,
- position_ids: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- # [seq_length, 3 x hidden_size]
- qkv, _ = self.query_key_value(hidden_states)
- q, k, v = qkv.chunk(chunks=3, dim=-1)
- if self.is_qk_layernorm:
- # [seq_length, num_heads, head_dim]
- q = self._split_heads(q)
- k = self._split_heads(k)
- q = self.q_layernorm(q)
- k = self.k_layernorm(k)
- q = self._merge_heads(q)
- k = self._merge_heads(k)
- q, k = self.rotary_emb(position_ids, q, k)
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
- output, _ = self.dense(attn_output)
- return output
- class PersimmonDecoderLayer(nn.Module):
- def __init__(self,
- config: PersimmonConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None):
- super().__init__()
- self.hidden_size = config.hidden_size
- self.self_attn = PersimmonAttention(config=config,
- cache_config=cache_config,
- quant_config=quant_config)
- self.mlp = PersimmonMLP(config, quant_config=quant_config)
- self.input_layernorm = nn.LayerNorm(config.hidden_size,
- eps=config.layer_norm_eps)
- self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
- eps=config.layer_norm_eps)
- def forward(
- self,
- position_ids: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- residual = hidden_states
- hidden_states = self.input_layernorm(hidden_states)
- # Self Attention
- hidden_states = self.self_attn(
- position_ids=position_ids,
- hidden_states=hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- hidden_states = residual + hidden_states
- # Fully Connected
- residual = hidden_states
- hidden_states = self.post_attention_layernorm(hidden_states)
- hidden_states = self.mlp(hidden_states)
- hidden_states = hidden_states + residual
- outputs = hidden_states
- return outputs
- class PersimmonModel(nn.Module):
- def __init__(self,
- config: PersimmonConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None):
- super().__init__()
- self.vocab_size = config.vocab_size
- self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
- config.hidden_size)
- self.layers = nn.ModuleList([
- PersimmonDecoderLayer(config,
- cache_config=cache_config,
- quant_config=quant_config)
- for _ in range(config.num_hidden_layers)
- ])
- self.final_layernorm = nn.LayerNorm(config.hidden_size,
- eps=config.layer_norm_eps)
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- inputs_embeds: Optional[torch.Tensor] = None,
- ) -> torch.Tensor:
- if inputs_embeds is not None:
- hidden_states = inputs_embeds
- else:
- hidden_states = self.embed_tokens(input_ids)
- for i in range(len(self.layers)):
- hidden_states = self.layers[i](
- positions,
- hidden_states,
- kv_caches[i],
- attn_metadata,
- )
- hidden_states = self.final_layernorm(hidden_states)
- return hidden_states
- class PersimmonForCausalLM(nn.Module):
- def __init__(self,
- config,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None):
- super().__init__()
- self.config = config
- self.vocab_size = config.vocab_size
- self.model = PersimmonModel(config,
- cache_config=cache_config,
- quant_config=quant_config)
- self.lm_head = ParallelLMHead(config.vocab_size,
- config.hidden_size,
- bias=False)
- self.logits_processor = LogitsProcessor(config.vocab_size)
- self.sampler = Sampler()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- ):
- hidden_states = self.model(
- input_ids=input_ids,
- positions=positions,
- kv_caches=kv_caches,
- attn_metadata=attn_metadata,
- inputs_embeds=inputs_embeds,
- )
- return hidden_states
- def compute_logits(
- self,
- hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[torch.Tensor]:
- logits = self.logits_processor(self.lm_head, hidden_states,
- sampling_metadata)
- return logits
- def sample(
- self,
- logits: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- params_dict = dict(self.named_parameters(remove_duplicate=False))
- for name, loaded_weight in weights:
- if "rotary_emb.inv_freq" in name:
- continue
- if ("rotary_emb.cos_cached" in name
- or "rotary_emb.sin_cached" in name):
- # Models trained using ColossalAI may include these tensors in
- # the checkpoint. Skip them.
- continue
- param = params_dict[name]
- if "query_key_value" in name:
- # copy from vllm/model_executor/models/bloom.py
- # NOTE: Persimmon's fused QKV's output_dim has the shape of
- # (num_heads * 3 * head_size), while the
- # required shape is (3 * num_heads * head_size).
- # Thus, we need weight conversion.
- output_dim = getattr(param, "output_dim", None)
- num_heads = self.config.num_attention_heads
- if output_dim is not None:
- loaded_weight_shape = loaded_weight.shape
- loaded_weight = loaded_weight.view(
- loaded_weight_shape[:output_dim] + (num_heads, 3, -1) +
- loaded_weight_shape[output_dim + 1:])
- loaded_weight = loaded_weight.transpose(
- output_dim, output_dim + 1)
- loaded_weight = loaded_weight.reshape(loaded_weight_shape)
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|