123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407 |
- # coding=utf-8
- # Copyright 2024 Cohere and the HuggingFace Inc. team. All rights reserved.
- #
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
- # and OPT implementations in this library. It has been modified from its
- # original forms to accommodate minor architectural differences compared
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # This file is based on the LLama model definition file in transformers
- """PyTorch Cohere model."""
- from typing import Iterable, List, Optional, Tuple
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from transformers import CohereConfig
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.config import CacheConfig, LoRAConfig
- from aphrodite.common.sequence import IntermediateTensors, SamplerOutput
- from aphrodite.distributed import get_tensor_model_parallel_world_size
- from aphrodite.modeling.layers.activation import SiluAndMul
- from aphrodite.modeling.layers.linear import (MergedColumnParallelLinear,
- QKVParallelLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.rotary_embedding import get_rope
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import (
- default_weight_loader, row_parallel_weight_loader)
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.modeling.utils import set_weight_attrs
- from aphrodite.quantization.base_config import QuantizationConfig
- @torch.compile
- def layer_norm_func(hidden_states, weight, variance_epsilon):
- input_dtype = hidden_states.dtype
- hidden_states = hidden_states.to(torch.float32)
- mean = hidden_states.mean(-1, keepdim=True)
- variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
- hidden_states = (hidden_states - mean) * torch.rsqrt(variance +
- variance_epsilon)
- hidden_states = weight.to(torch.float32) * hidden_states
- return hidden_states.to(input_dtype)
- class LayerNorm(nn.Module):
- def __init__(self, param_shape=None, eps=1e-5):
- super().__init__()
- self.weight = nn.Parameter(torch.ones(param_shape))
- self.variance_epsilon = eps
- set_weight_attrs(self.weight,
- {"weight_loader": row_parallel_weight_loader})
- def forward(self, hidden_states, residuals=None):
- hidden_states = layer_norm_func(hidden_states, self.weight,
- self.variance_epsilon)
- return hidden_states, residuals
- # Copied from transformers.models.llama.modeling_llama.LlamaMLP Llama->Cohere
- class CohereMLP(nn.Module):
- def __init__(
- self,
- config,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.hidden_size = config.hidden_size
- self.intermediate_size = config.intermediate_size
- self.gate_up_proj = MergedColumnParallelLinear(
- self.hidden_size,
- [self.intermediate_size] * 2,
- bias=False,
- quant_config=quant_config,
- )
- self.down_proj = RowParallelLinear(
- self.intermediate_size,
- self.hidden_size,
- bias=False,
- quant_config=quant_config,
- )
- self.act_fn = SiluAndMul()
- def forward(self, x):
- gate_up, _ = self.gate_up_proj(x)
- x = self.act_fn(gate_up)
- x, _ = self.down_proj(x)
- return x
- class CohereAttention(nn.Module):
- def __init__(
- self,
- config: CohereConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- tp_size = get_tensor_model_parallel_world_size()
- self.config = config
- self.attention_dropout = config.attention_dropout
- self.hidden_size = config.hidden_size
- self.total_num_heads = config.num_attention_heads
- self.num_heads = self.total_num_heads // tp_size
- self.head_dim = self.hidden_size // self.total_num_heads
- self.total_num_kv_heads = config.num_key_value_heads
- if self.total_num_kv_heads >= tp_size:
- # Number of KV heads is greater than TP size, so we partition
- # the KV heads across multiple tensor parallel GPUs.
- assert self.total_num_kv_heads % tp_size == 0
- else:
- # Number of KV heads is less than TP size, so we replicate
- # the KV heads across multiple tensor parallel GPUs.
- assert tp_size % self.total_num_kv_heads == 0
- self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
- self.q_size = self.num_heads * self.head_dim
- self.kv_size = self.num_kv_heads * self.head_dim
- self.scaling = self.head_dim**-0.5
- self.max_position_embeddings = getattr(
- config, "model_max_length", None) or getattr(
- config, "max_position_embeddings", 8192)
- self.rope_theta = config.rope_theta
- self.rope_scaling = getattr(config, "rope_scaling", None)
- self.use_qk_norm = getattr(config, "use_qk_norm", False)
- self.qkv_proj = QKVParallelLinear(
- self.hidden_size,
- self.head_dim,
- self.total_num_heads,
- self.total_num_kv_heads,
- bias=False,
- quant_config=quant_config,
- )
- self.o_proj = RowParallelLinear(
- self.total_num_heads * self.head_dim,
- self.hidden_size,
- bias=False,
- quant_config=quant_config,
- )
- self.rotary_emb = get_rope(
- self.head_dim,
- rotary_dim=self.head_dim,
- max_position=self.max_position_embeddings,
- base=self.rope_theta,
- rope_scaling=self.rope_scaling,
- is_neox_style=False,
- )
- self.attn = Attention(self.num_heads,
- self.head_dim,
- self.scaling,
- num_kv_heads=self.num_kv_heads,
- cache_config=cache_config,
- quant_config=quant_config)
- if self.use_qk_norm:
- self.q_norm = LayerNorm(param_shape=(self.num_heads,
- self.head_dim),
- eps=config.layer_norm_eps)
- self.k_norm = LayerNorm(param_shape=(self.num_kv_heads,
- self.head_dim),
- eps=config.layer_norm_eps)
- def _apply_qk_norm(self, q, k):
- q = q.view(*q.shape[:-1], -1, self.head_dim)
- k = k.view(*k.shape[:-1], -1, self.head_dim)
- q, _ = self.q_norm(q)
- k, _ = self.k_norm(k)
- q = q.view(*q.shape[:-2], -1)
- k = k.view(*k.shape[:-2], -1)
- return q, k
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- qkv, _ = self.qkv_proj(hidden_states)
- q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
- if self.use_qk_norm:
- q, k = self._apply_qk_norm(q, k)
- q, k = self.rotary_emb(positions, q, k)
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
- output, _ = self.o_proj(attn_output)
- return output
- class CohereDecoderLayer(nn.Module):
- def __init__(self,
- config: CohereConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None):
- super().__init__()
- self.hidden_size = config.hidden_size
- self.self_attn = CohereAttention(config,
- cache_config,
- quant_config=quant_config)
- self.mlp = CohereMLP(config, quant_config=quant_config)
- self.input_layernorm = LayerNorm(param_shape=(config.hidden_size),
- eps=config.layer_norm_eps)
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- residual: Optional[torch.Tensor],
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- # Self Attention
- residual = hidden_states
- hidden_states, residual = self.input_layernorm(hidden_states, residual)
- hidden_states_attention = self.self_attn(
- positions=positions,
- hidden_states=hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- hidden_states_mlp = self.mlp(hidden_states)
- # Add everything together
- hidden_states = residual + hidden_states_attention + hidden_states_mlp
- return hidden_states, residual
- class CohereModel(nn.Module):
- def __init__(
- self,
- config: CohereConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- lora_config: Optional[LoRAConfig] = None,
- ):
- super().__init__()
- self.config = config
- lora_vocab = (lora_config.lora_extra_vocab_size *
- (lora_config.max_loras or 1)) if lora_config else 0
- self.vocab_size = config.vocab_size + lora_vocab
- self.org_vocab_size = config.vocab_size
- self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
- config.hidden_size)
- self.layers = nn.ModuleList([
- CohereDecoderLayer(config, cache_config, quant_config=quant_config)
- for _ in range(config.num_hidden_layers)
- ])
- self.norm = LayerNorm(param_shape=(config.hidden_size),
- eps=config.layer_norm_eps)
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states = self.embed_tokens(input_ids)
- residual = None
- for i in range(len(self.layers)):
- layer = self.layers[i]
- hidden_states, residual = layer(
- positions,
- hidden_states,
- kv_caches[i],
- attn_metadata,
- residual,
- )
- hidden_states, _ = self.norm(hidden_states, residual)
- return hidden_states
- class CohereForCausalLM(nn.Module):
- packed_modules_mapping = {
- "qkv_proj": [
- "q_proj",
- "k_proj",
- "v_proj",
- ],
- "gate_up_proj": [
- "gate_proj",
- "up_proj",
- ],
- }
- # LoRA specific attributes
- supported_lora_modules = [
- "qkv_proj", "o_proj", "gate_up_proj", "down_proj", "embed_tokens"
- ]
- embedding_modules = {"embed_tokens": "input_embeddings"}
- embedding_padding_modules = []
- def __init__(
- self,
- config: CohereConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- lora_config: Optional[LoRAConfig] = None,
- ) -> None:
- super().__init__()
- self.config = config
- self.unpadded_vocab_size = config.vocab_size
- if lora_config:
- self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
- self.quant_config = quant_config
- self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
- config.vocab_size,
- scale=config.logit_scale)
- self.model = CohereModel(config,
- cache_config,
- quant_config,
- lora_config=lora_config)
- self.sampler = Sampler()
- @torch.no_grad()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- ) -> torch.Tensor:
- hidden_states = self.model(input_ids, positions, kv_caches,
- attn_metadata)
- return hidden_states
- def compute_logits(
- self,
- hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[torch.Tensor]:
- is_not_lora = hasattr(self.model.embed_tokens, 'weight')
- if is_not_lora:
- logits = self.logits_processor(self.model.embed_tokens,
- hidden_states, sampling_metadata)
- else:
- logits = self.logits_processor(self.model.embed_tokens.base_layer,
- hidden_states, sampling_metadata)
- return logits
- def sample(
- self,
- logits: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- stacked_params_mapping = [
- # (param_name, shard_name, shard_id)
- ("qkv_proj", "q_proj", "q"),
- ("qkv_proj", "k_proj", "k"),
- ("qkv_proj", "v_proj", "v"),
- ("gate_up_proj", "gate_proj", 0),
- ("gate_up_proj", "up_proj", 1),
- ]
- params_dict = dict(self.named_parameters())
- loaded_params = set()
- for name, loaded_weight in weights:
- for param_name, shard_name, shard_id in stacked_params_mapping:
- if shard_name not in name:
- continue
- name = name.replace(shard_name, param_name)
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = param.weight_loader
- weight_loader(param, loaded_weight, shard_id)
- break
- else:
- # lm_head is not used in vllm as it is tied with embed_token.
- # To prevent errors, skip loading lm_head.weight.
- if "lm_head.weight" in name:
- continue
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
- loaded_params.add(name)
|