1
0

calibration.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324
  1. # Copyright (c) OpenMMLab. All rights reserved.
  2. from functools import partial
  3. from typing import Union
  4. import torch
  5. import transformers
  6. from pkg_resources import parse_version
  7. from torch import nn
  8. from transformers import PreTrainedTokenizer
  9. from aphrodite.kv_quant.observer import ActivationObserver, KVCacheObserver
  10. from aphrodite.kv_quant.utils import (bimap_name_mod, collect_target_modules,
  11. concat_decoder_layer_outputs,
  12. split_decoder_layer_inputs)
  13. class CalibrationContext():
  14. """Calibration context manager for model quantization.
  15. Parameters:
  16. - model: The target model to be calibrated and quantized
  17. - tokenizer: The tokenizer used in the model training
  18. - layer_type: Layer type to be targeted for calibration
  19. - norm_type: Normalization type used for calibration
  20. - device: Device on which model is to be calibrated ('cpu' or 'cuda')
  21. """
  22. inp_obs_group = 'inputs'
  23. out_obs_group = 'outputs'
  24. key_obs_group = 'keys'
  25. value_obs_group = 'values'
  26. def __init__(self,
  27. model: nn.Module,
  28. tokenizer: PreTrainedTokenizer,
  29. layer_type: Union[str, type],
  30. norm_type: Union[str, type],
  31. device: str = 'cuda') -> None:
  32. """Initiate calibration context.
  33. Args:
  34. model (nn.Module): Model to be calibrated.
  35. tokenizer (PreTrainedTokenizer): Tokenizer of the given model.
  36. layer_type (Union[str, type]): Type of the layers to be observed.
  37. norm_type (Union[str, type]): Norm type used in the model.
  38. device (str, optional): Device where the model should run.
  39. Defaults to 'cuda'.
  40. """
  41. self.layer_type = layer_type
  42. self.norm_type = norm_type
  43. num_kv_heads, num_attn_heads = self._guess_num_heads(model)
  44. self.num_kv_heads = num_kv_heads
  45. self.head_dim = model.config.hidden_size // num_attn_heads
  46. self.model = model
  47. del self.model.lm_head
  48. self.tokenizer = tokenizer
  49. # Collect modules to observe
  50. self.name2layer = collect_target_modules(self.model, layer_type)
  51. self.name2fc = {}
  52. for l_name, layer in self.name2layer.items():
  53. name2fc = collect_target_modules(layer, nn.Linear, prefix=l_name)
  54. self.name2fc.update(name2fc)
  55. self.name2norm = collect_target_modules(self.model, norm_type)
  56. maps = bimap_name_mod([self.name2layer, self.name2fc, self.name2norm])
  57. self.name2mod, self.mod2name = maps
  58. # Initialize observers
  59. self._init_input_observers(self.name2fc)
  60. self._init_output_observers(self.name2norm)
  61. self._init_output_observers(self.name2fc)
  62. self._init_kv_observers(self.name2layer)
  63. self.device = device
  64. def _guess_num_heads(self, model):
  65. if hasattr(model.config, 'num_key_value_heads'):
  66. num_kv_heads = model.config.num_key_value_heads
  67. else:
  68. num_kv_heads = model.config.num_attention_heads
  69. num_attn_heads = model.config.num_attention_heads
  70. return num_kv_heads, num_attn_heads
  71. def _init_input_observers(self, name2mod):
  72. """Initialize input observers for given modules."""
  73. for name, mod in name2mod.items():
  74. obs = ActivationObserver(mod.weight.size(-1))
  75. obs.global_available(name, group=self.inp_obs_group)
  76. def _init_output_observers(self, name2mod):
  77. """Initialize output observers for given modules."""
  78. for name, mod in name2mod.items():
  79. obs = ActivationObserver(mod.weight.size(0))
  80. obs.global_available(name, group=self.out_obs_group)
  81. def _init_kv_observers(self, name2mod):
  82. """Initialize KV observers for given modules."""
  83. for name in name2mod:
  84. k_obs = KVCacheObserver(self.num_kv_heads, self.head_dim)
  85. v_obs = KVCacheObserver(self.num_kv_heads, self.head_dim)
  86. k_obs.global_available(name, group=self.key_obs_group)
  87. v_obs.global_available(name, group=self.value_obs_group)
  88. def _insert_input_observers(self):
  89. """Insert input observers into the target modules.
  90. This function registers a forward pre-hook on each target module to
  91. observe the inputs.
  92. """
  93. def _input_hook(mod: nn.Module, inp: torch.Tensor):
  94. m_name = self.mod2name[mod]
  95. obs = ActivationObserver.find(m_name, group=self.inp_obs_group)
  96. obs.observe(inp[0])
  97. group = ActivationObserver.find_group(self.inp_obs_group)
  98. for name in group:
  99. mod = self.name2mod[name]
  100. hook_fn = mod.register_forward_pre_hook(_input_hook)
  101. self._hooks.append(hook_fn)
  102. def _insert_output_observers(self):
  103. """Insert output observers into the target modules.
  104. This function registers a forward hook on each target module to observe
  105. the outputs.
  106. """
  107. def _output_hook(mod: nn.Module, inp: torch.Tensor, out: torch.Tensor):
  108. m_name = self.mod2name[mod]
  109. obs = ActivationObserver.find(m_name, group=self.out_obs_group)
  110. obs.observe(out)
  111. group = ActivationObserver.find_group(self.out_obs_group)
  112. for name in group:
  113. mod = self.name2mod[name]
  114. hook_fn = mod.register_forward_hook(_output_hook)
  115. self._hooks.append(hook_fn)
  116. def _wrap_decoder_layers(self):
  117. """Method to wrap the decoder layers' forward functions for observing
  118. their key/value cache during batched forward passes."""
  119. def _forward(mod, *args, **kwargs):
  120. mod.to(self.device)
  121. batch_args, batch_kwargs = split_decoder_layer_inputs(
  122. *args, **kwargs)
  123. batch_outputs = []
  124. samples = len(batch_args)
  125. m_name = self.mod2name[mod]
  126. k_obs = KVCacheObserver.find(m_name, group=self.key_obs_group)
  127. v_obs = KVCacheObserver.find(m_name, group=self.value_obs_group)
  128. for i in range(len(batch_args)):
  129. if k_obs and v_obs:
  130. batch_kwargs[i]['use_cache'] = True
  131. version = parse_version(transformers.__version__)
  132. use_new_cache = type(mod).__name__ == 'LlamaDecoderLayer'
  133. if version > parse_version('4.36.0') and use_new_cache:
  134. from transformers.cache_utils import DynamicCache
  135. batch_kwargs[i]['past_key_value'] = DynamicCache()
  136. ori_idx = mod.self_attn.layer_idx
  137. mod.self_attn.layer_idx = 0
  138. out = self._ori_forwards[mod](*batch_args[i],
  139. **batch_kwargs[i])
  140. mod.self_attn.layer_idx = ori_idx
  141. out = list(out)
  142. cache = out.pop(-1)
  143. key = cache.key_cache.pop(-1)
  144. value = cache.value_cache.pop(-1)
  145. k_obs.observe(key)
  146. v_obs.observe(value)
  147. else:
  148. out = self._ori_forwards[mod](*batch_args[i],
  149. **batch_kwargs[i])
  150. out = list(out)
  151. key, value = out.pop(-1)
  152. k_obs.observe(key)
  153. v_obs.observe(value)
  154. del key, value
  155. torch.cuda.empty_cache()
  156. batch_outputs.append(tuple(out))
  157. else:
  158. batch_outputs.append(self._ori_forwards[mod](
  159. *batch_args[i], **batch_kwargs[i]))
  160. outputs = concat_decoder_layer_outputs(batch_outputs)
  161. del batch_outputs, batch_args, batch_kwargs, args
  162. mod.to('cpu')
  163. torch.cuda.empty_cache()
  164. max_memory = torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024
  165. print(f'{m_name}, samples: {samples}, '
  166. f'max gpu memory: {max_memory:.2f} GB')
  167. return outputs
  168. for layer in self.name2layer.values():
  169. self._ori_forwards[layer] = layer.forward
  170. layer.forward = partial(_forward, layer)
  171. def collect_inputs_stats(self):
  172. """Collect statistics (min, max, absmax values) of the observed inputs.
  173. Returns a dictionary with these collected stats.
  174. """
  175. inputs_stats = {
  176. 'max': {},
  177. 'min': {},
  178. 'mean': {},
  179. 'absmax': {},
  180. 'absmean': {}
  181. }
  182. obs_group = ActivationObserver.find_group(self.inp_obs_group)
  183. for name, obs in obs_group.items():
  184. inputs_stats['max'][name] = obs.max_val
  185. inputs_stats['min'][name] = obs.min_val
  186. inputs_stats['mean'][name] = obs.mean_val
  187. inputs_stats['absmax'][name] = obs.absmax_val
  188. inputs_stats['absmean'][name] = obs.absmean_val
  189. return inputs_stats
  190. def collect_outputs_stats(self):
  191. """Collect statistics (min, max, absmax values) of the observed
  192. outputs.
  193. Returns a dictionary with these collected stats.
  194. """
  195. outputs_stats = {
  196. 'max': {},
  197. 'min': {},
  198. 'mean': {},
  199. 'absmax': {},
  200. 'absmean': {}
  201. }
  202. obs_group = ActivationObserver.find_group(self.out_obs_group)
  203. for name, obs in obs_group.items():
  204. outputs_stats['max'][name] = obs.max_val
  205. outputs_stats['min'][name] = obs.min_val
  206. outputs_stats['mean'][name] = obs.mean_val
  207. outputs_stats['absmax'][name] = obs.absmax_val
  208. outputs_stats['absmean'][name] = obs.absmean_val
  209. return outputs_stats
  210. def collect_kv_stats(self):
  211. """Collect statistics (min, max, absmax values) of the observed keys
  212. and values.
  213. Returns a tuple of two dictionaries with these collected stats.
  214. """
  215. key_stats = {'max': {}, 'min': {}, 'absmax': {}}
  216. obs_group = KVCacheObserver.find_group(self.key_obs_group)
  217. for name, obs in obs_group.items():
  218. key_stats['max'][name] = obs.max_val
  219. key_stats['min'][name] = obs.min_val
  220. key_stats['absmax'][name] = obs.absmax_val
  221. value_stats = {'max': {}, 'min': {}, 'absmax': {}}
  222. obs_group = KVCacheObserver.find_group(self.value_obs_group)
  223. for name, obs in obs_group.items():
  224. value_stats['max'][name] = obs.max_val
  225. value_stats['min'][name] = obs.min_val
  226. value_stats['absmax'][name] = obs.absmax_val
  227. return key_stats, value_stats
  228. def export(self, out_dir):
  229. """Export the calibration statistics (inputs, outputs, keys and values)
  230. to specified directory.
  231. Args:
  232. out_dir (Union[str, Path]): The directory path where the stats
  233. will be saved.
  234. """
  235. inp_stats = self.collect_inputs_stats()
  236. torch.save(inp_stats, out_dir / 'inputs_stats.pth')
  237. out_stats = self.collect_outputs_stats()
  238. torch.save(out_stats, out_dir / 'outputs_stats.pth')
  239. key_stats, value_stats = self.collect_kv_stats()
  240. torch.save(key_stats, out_dir / 'key_stats.pth')
  241. torch.save(value_stats, out_dir / 'value_stats.pth')
  242. def calibrate(self, data):
  243. """Forward pass through the model in inference mode with given data."""
  244. if type(self.model).__name__ == 'QWenLMHeadModel':
  245. model = self.model.transformer
  246. else:
  247. model = self.model.model
  248. with torch.inference_mode():
  249. _ = model(data.to(self.device))
  250. def __enter__(self):
  251. """Prepares the Calibration object for a 'with' statement by
  252. registering hooks and wrapping layer forward methods."""
  253. self._hooks = list()
  254. self._ori_forwards = {}
  255. for layer in self.name2layer.values():
  256. self._ori_forwards[layer] = layer.forward
  257. self._insert_input_observers()
  258. self._insert_output_observers()
  259. self._wrap_decoder_layers()
  260. def __exit__(self, exc_type, exc_value, traceback):
  261. """Clean up after a 'with' statement by removing registered hooks,
  262. restoring original forward methods, and if no exception occurred,
  263. collecting all gathered statistics and saving them."""
  264. for h in self._hooks:
  265. h.remove()
  266. for layer in self.name2layer.values():
  267. layer.forward = self._ori_forwards[layer]