123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756 |
- #include <cuda_bf16.h>
- #include <cuda_fp16.h>
- #include <cuda_runtime.h>
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 700
- #include <mma.h>
- #endif
- #include <ATen/ATen.h>
- #include <ATen/core/Tensor.h>
- #include <ATen/cuda/CUDAContext.h>
- #include <ATen/DeviceGuard.h>
- #include <torch/extension.h>
- #include <c10/cuda/CUDAGuard.h>
- template <typename U, typename V>
- constexpr __host__ __device__ auto divDown(U a, V b) -> decltype(a + b) {
- static_assert(std::is_integral<U>::value && std::is_integral<V>::value, "");
- return (a / b);
- }
- template <typename U, typename V>
- constexpr __host__ __device__ auto divUp(U a, V b) -> decltype(a + b) {
- static_assert(std::is_integral<U>::value && std::is_integral<V>::value, "");
- // Overflow safe variant of (a + b - 1) / b
- const uint64_t blocks = a / b + (a % b != 0);
- return blocks;
- }
- template <typename U, typename V>
- constexpr __host__ __device__ auto roundDown(U a, V b) -> decltype(a + b) {
- static_assert(std::is_integral<U>::value && std::is_integral<V>::value, "");
- return divDown(a, b) * b;
- }
- template <typename U, typename V>
- constexpr __host__ __device__ auto roundUp(U a, V b) -> decltype(a + b) {
- static_assert(std::is_integral<U>::value && std::is_integral<V>::value, "");
- return divUp(a, b) * b;
- }
- constexpr int32_t kWarpSize = 32;
- constexpr int32_t KTilesPerWarp = 8;
- constexpr int32_t kMTileSize = 16;
- constexpr int32_t kNTileSize = 8;
- constexpr int32_t kKTileSize = 16;
- struct __align__(16) f16x2x4_u32 {
- uint32_t vals[4];
- };
- struct __align__(16) f16x2x2_u32 {
- uint32_t vals[2];
- };
- struct ALayout_RM {
- template <int KTilesToLoad>
- static __device__ void load(
- const half* A,
- int32_t m,
- int32_t k,
- int32_t mTiles,
- int32_t mTile,
- int32_t kTiles,
- int32_t kTileStart,
- int32_t laneId,
- f16x2x4_u32 out[KTilesToLoad]) {
- const auto mLane = mTile * kMTileSize + (laneId / 4);
- const auto kLane = kTileStart * kKTileSize + (laneId % 4) * 4;
- // access
- // [mTile * kMTileSize + (laneId / 4)]
- // [kTileStart * kKTileSize + (laneId % 4) * 2]
- auto aPtr = A + mLane * k + kLane;
- auto aPtrPlus8Rows = aPtr + 8 * k;
- bool m0InBounds = mLane < m;
- bool m1InBounds = (mLane + 8) < m;
- #pragma unroll
- for (int i = 0; i < KTilesToLoad; ++i) {
- out[i].vals[0] = m0InBounds
- ? *reinterpret_cast<const uint32_t*>(aPtr + i * kKTileSize)
- : uint32_t(0);
- out[i].vals[1] = m1InBounds
- ? *reinterpret_cast<const uint32_t*>(aPtrPlus8Rows + i * kKTileSize)
- : uint32_t(0);
- out[i].vals[2] = m0InBounds
- ? *reinterpret_cast<const uint32_t*>(aPtr + i * kKTileSize + 2)
- : uint32_t(0);
- out[i].vals[3] = m1InBounds ? *reinterpret_cast<const uint32_t*>(
- aPtrPlus8Rows + i * kKTileSize + 2)
- : uint32_t(0);
- }
- }
- static __device__ void store(
- half* C,
- int32_t m,
- int32_t n,
- int32_t mOutTiles,
- int32_t mTile,
- int32_t nOutTiles,
- int32_t nTile,
- int32_t laneId,
- const float4& out) {
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- // sum.x / sum.y are written at
- // [laneId / 4], [(laneId % 4) * 2, (laneId % 4) * 2 + 1]
- // sum.z / sum.w are written at
- // [8 + (laneId / 4)], [(laneId % 4) * 2, (laneId % 4) * 2 + 1]
- // i.e., same columns, different row.
- const int outRow = mTile * kMTileSize + (laneId / 4);
- const int outCol = nTile * kNTileSize + (laneId % 4) * 2;
- // Pointer where sum.x / sum.y is written
- auto cPtr = C + outRow * n + outCol;
- auto v01 = __float22half2_rn(float2{out.x, out.y});
- auto v23 = __float22half2_rn(float2{out.z, out.w});
- if (outRow < m) {
- *reinterpret_cast<half2*>(cPtr) = v01;
- }
- // sum.z, sum.w at +8 rows from cPtr
- if (outRow + 8 < m) {
- *reinterpret_cast<half2*>(cPtr + 8 * n) = v23;
- }
- #endif
- }
- };
- struct BLayout_D4 {
- static constexpr bool use_codebook = true;
- template <int KTilesPerIteration>
- static __device__ void load(
- const void* __restrict__ B,
- const uint64_t* __restrict__ CB,
- int32_t n,
- int32_t k,
- int32_t nTiles,
- int32_t nTile,
- int32_t kTiles,
- int32_t kTileStart,
- int32_t laneId,
- f16x2x2_u32 b[KTilesPerIteration]) {
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- auto Bptr = reinterpret_cast<const uint8_t*>(B);
- #pragma unroll
- for (int i = 0; i < KTilesPerIteration; ++i) {
- const int row = nTile * kNTileSize + laneId / 4;
- const int col = (kTileStart + i) * kKTileSize / 4 + laneId % 4;
- *(reinterpret_cast<uint64_t*>(b[i].vals)) = CB[Bptr[row * k/4 + col]];
- }
- #endif
- }
- };
- struct BLayout_HI {
- static constexpr bool use_codebook = false;
- template <int KTilesPerIteration>
- static __device__ void load(
- const void* __restrict__ B,
- const uint64_t* __restrict__ CB,
- int32_t n,
- int32_t k,
- int32_t nTiles,
- int32_t nTile,
- int32_t kTiles,
- int32_t kTileStart,
- int32_t laneId,
- f16x2x2_u32 b[KTilesPerIteration]) {
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- auto Bptr = reinterpret_cast<const uint32_t*>(B);
- #pragma unroll
- for (int i = 0; i < KTilesPerIteration; ++i) {
- const int row = nTile * kNTileSize + laneId / 4;
- const int col = (kTileStart + i) * kKTileSize / 8 + (laneId % 4) / 2;
- // simply use code - 7.5 instead of reading codebook
- uint32_t code = Bptr[row * k/8 + col];
- const uint32_t c0 = 0x64086408;
- const half y16_ = __float2half_rn(1.0f / 16.0f);
- const half2 y16 = __halves2half2(y16_, y16_);
- const half z16_ = __float2half_rn(-1024.0f / 16.0f - 8.0f);
- const half2 z16 = __halves2half2(z16_, z16_);
- uint32_t qa = code >> ((laneId & 1) * 8);
- uint32_t q0 = (((qa & 0x000f000f) << 4)| c0);
- uint32_t q1 = ((qa & 0x00f000f0) | c0);
- *(half2*)(b[i].vals) = __hfma2(*((half2*)(&q0)), y16, z16);
- *(half2*)(b[i].vals+1) = __hfma2(*((half2*)(&q1)), y16, z16);
- }
- #endif
- }
- };
- struct BLayout_E8 {
- static constexpr bool use_codebook = true;
- __device__ static inline uint64_t decode8weights(
- uint16_t weight_compressed,
- const int64_t *__restrict__ codebook_abs
- ) {
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- uint8_t bits_sign = weight_compressed & 0xff;
- uint8_t parity = __popc(bits_sign) & 1;
- uint8_t sign_vec = bits_sign ^ parity;
- uint8_t bits_abs = (weight_compressed >> 8);
- int64_t packed = codebook_abs[bits_abs];
- uint64_t decoded_sign = sign_vec * 0x8040201008040201ll;
- decoded_sign &= 0x8080808080808080;
- decoded_sign >>= 7;
- decoded_sign *= 255 - 3;
- packed ^= decoded_sign;
- packed |= 0x0101010101010101;
- packed -= parity * 0x0202020202020202;
- return packed;
- #endif
- }
- __device__ static inline uint32_t decode8weights(
- uint16_t weight_compressed,
- const int64_t *__restrict__ codebook_abs,
- int idx
- ) {
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- uint8_t bits_sign = weight_compressed & 0xff; //__brev(weight_compressed) >> 24;
- const uint32_t magic_nums[2] = {0x08040201ll, 0x80402010ll};
- uint8_t parity = __popc(bits_sign) & 1;
- uint8_t sign_vec = bits_sign ^ parity; // (parity << 7);
- uint16_t bits_abs = (weight_compressed >> 8);
- uint32_t packed = ((uint32_t*)codebook_abs)[(bits_abs << 1) + idx];
- uint32_t magic_num = magic_nums[idx];
- uint32_t decoded_sign = sign_vec * magic_num;
- decoded_sign &= 0x80808080;
- decoded_sign >>= 7;
- decoded_sign *= 255 - 3;
- packed ^= decoded_sign;
- packed |= 0x01010101;
- packed -= parity * 0x02020202;
- return packed;
- #endif
- };
- template <int KTilesPerIteration>
- static __device__ void load(
- const void* __restrict__ B,
- const uint64_t* __restrict__ CB,
- int32_t n,
- int32_t k,
- int32_t nTiles,
- int32_t nTile,
- int32_t kTiles,
- int32_t kTileStart,
- int32_t laneId,
- f16x2x2_u32 b[KTilesPerIteration]) {
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- auto Bptr = (const uint16_t*) B;
- #pragma unroll
- for (int i = 0; i < KTilesPerIteration; ++i) {
- const int row = nTile * kNTileSize + laneId / 4;
- const int col = (kTileStart + i) * kKTileSize / 8 + laneId % 4 / 2;
- uint32_t decoded = decode8weights(Bptr[row * k/8 + col], (const int64_t*)CB, laneId & 1);
- half2 unpacked[2];
- uint32_t lower_half = decoded & 0x00ff00ff;
- lower_half = (lower_half ^ 0x5c805c80);
- memcpy(unpacked, &lower_half, sizeof(uint32_t));
- uint32_t upper_half = (decoded & 0xff00ff00) >> 8;
- upper_half = (upper_half ^ 0x5c805c80);
- memcpy(unpacked + 1, &upper_half, sizeof(uint32_t));
- const half adjust_ = __float2half_rn(-288.0f);
- const half2 adjust = __halves2half2(adjust_, adjust_);
- unpacked[0] = __hadd2(unpacked[0], adjust);
- unpacked[1] = __hadd2(unpacked[1], adjust);
- *(reinterpret_cast<uint64_t*>(b[i].vals)) = *(reinterpret_cast<uint64_t*>(unpacked));
- //*((half*)(b[i].vals)) = unpacked[0];
- //*((half*)(b[i].vals) + 1) = unpacked[0].y;
- //*((half*)(b[i].vals) + 2) = unpacked[1].x;
- //*((half*)(b[i].vals) + 3) = unpacked[1].y;
- }
- #endif
- }
- };
- template <
- typename ALayout,
- typename BLayout,
- typename CLayout,
- int Warps,
- int KTilesPerIteration>
- __global__
- __launch_bounds__(256) void tinygemm_m16n8k16_chunk_kernel(
- // Data for the A matrix, loaded as per ALayout
- const half* __restrict__ A,
- const void* __restrict__ B,
- const uint64_t* __restrict__ CB,
- // Output data for the C matrix, stored as per CLayout
- half* __restrict__ C,
- // The size of the matrix multiplication
- int32_t m,
- int32_t n,
- int32_t k,
- // The size of the matrix multiplication, in multiples of our TC tile size
- int32_t mTiles,
- int32_t nTiles,
- int32_t kTiles) {
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- __shared__ uint64_t CB_[256];
- if (BLayout::use_codebook) {
- CB_[threadIdx.x + threadIdx.y * 32] = CB[threadIdx.x + threadIdx.y * 32];
- __syncthreads();
- }
- auto warpId = threadIdx.y;
- auto laneId = threadIdx.x;
- int32_t mTile = blockIdx.z;
- int32_t nTile = blockIdx.y;
- float4 c{0.0f, 0.0f, 0.0f, 0.0f};
- // First, handle whole multiples of KTilesPerIteration
- auto kTilesLimit = roundDown(kTiles, KTilesPerIteration);
- // Each warp handles a set of KTilesPerIteration under the above limit
- for (int32_t kTileBase = warpId * KTilesPerIteration; kTileBase < kTilesLimit; kTileBase += Warps * KTilesPerIteration) {
- //
- // Load data from A
- //
- f16x2x4_u32 a[KTilesPerIteration];
- ALayout::template load<KTilesPerIteration>(
- A, m, k, mTiles, mTile, kTiles, kTileBase, laneId, a);
- //
- // Load data from B and de-quantize as needed
- //
- f16x2x2_u32 b[KTilesPerIteration];
- BLayout::template load<KTilesPerIteration>(
- B, CB_, n, k, nTiles, nTile, kTiles, kTileBase, laneId, b);
- // Now, perform the matrix multiplication
- //
- #pragma unroll
- for (int i = 0; i < KTilesPerIteration / 2; ++i) {
- float4 cTmp[2];
- #pragma unroll
- for (int k = 0; k < 2; ++k) {
- cTmp[k] = float4{0.0f, 0.0f, 0.0f, 0.0f};
- }
- #pragma unroll
- for (int k = 0; k < 2; ++k) {
- asm volatile(
- "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 "
- "{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};"
- : "=f"(cTmp[k].x),
- "=f"(cTmp[k].y),
- "=f"(cTmp[k].z),
- "=f"(cTmp[k].w)
- : "r"(a[i * 2 + k].vals[0]),
- "r"(a[i * 2 + k].vals[1]),
- "r"(a[i * 2 + k].vals[2]),
- "r"(a[i * 2 + k].vals[3]),
- "r"(b[i * 2 + k].vals[0]),
- "r"(b[i * 2 + k].vals[1]),
- "f"(cTmp[k].x),
- "f"(cTmp[k].y),
- "f"(cTmp[k].z),
- "f"(cTmp[k].w));
- }
- #pragma unroll
- for (int k = 0; k < 2; ++k) {
- c.x += cTmp[k].x;
- c.y += cTmp[k].y;
- c.z += cTmp[k].z;
- c.w += cTmp[k].w;
- }
- }
- } // for all tiles under kTilesLimit
- auto kTileBaseRemaining = kTilesLimit + warpId;
- // If we have any remainder k-tiles, some warps will handle them, processing
- // kInnerKTiles k-tiles at a time
- if (kTileBaseRemaining < kTiles) {
- f16x2x4_u32 a;
- ALayout::template load<1>(
- A, m, k, mTiles, mTile, kTiles, kTileBaseRemaining, laneId, &a);
- f16x2x2_u32 b;
- BLayout::template load<1>(
- B, CB, n, k, nTiles, nTile, kTiles, kTileBaseRemaining, laneId, &b);
- asm volatile(
- "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 "
- "{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};"
- : "=f"(c.x),
- "=f"(c.y),
- "=f"(c.z),
- "=f"(c.w)
- : "r"(a.vals[0]),
- "r"(a.vals[1]),
- "r"(a.vals[2]),
- "r"(a.vals[3]),
- "r"(b.vals[0]),
- "r"(b.vals[1]),
- "f"(c.x),
- "f"(c.y),
- "f"(c.z),
- "f"(c.w));
- }
- // Reduce independent k-tiles (same m/n) across warps
- __shared__ float4 smem_sum[Warps][kWarpSize];
- smem_sum[warpId][laneId] = c;
- __syncthreads();
- if (warpId == 0) {
- float4 sum_f32{0.0f, 0.0f, 0.0f, 0.0f};
- // Reduce across the block in the first warp
- for (int i = 0; i < Warps; ++i) {
- float4 v = smem_sum[i][laneId];
- sum_f32.x += v.x;
- sum_f32.y += v.y;
- sum_f32.z += v.z;
- sum_f32.w += v.w;
- }
- // Write the reduced result (in the first warp) into the output
- CLayout::store(
- C,
- m,
- n,
- mTiles,
- mTile,
- // n for C output becomes k for A input, so for m16n8k16,
- // we need to halve the tiles
- nTiles / 2,
- nTile,
- laneId,
- sum_f32);
- }
- #endif
- }
- at::Tensor d4_mm_origorder(
- const at::Tensor& A,
- const at::Tensor& B,
- const at::Tensor& CB) {
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- c10::cuda::CUDAGuard g(A.device());
- auto stream = at::cuda::getCurrentCUDAStream();
- constexpr int Warps = 8;
- // row major layout
- auto m = A.size(0);
- auto mTiles = divUp(m, kMTileSize);
- // tensor core layout
- auto n = B.size(0);
- auto nTiles = divUp(n, kNTileSize);
- // row major layout
- auto k = A.size(1);
- auto kTiles = divUp(k, kKTileSize);
- // Output is a standard row-major matrix
- auto C_final = at::empty(
- {m, n}, at::TensorOptions().dtype(A.dtype()).device(A.device()));
- auto grid = dim3(1, nTiles, mTiles);
- auto block = dim3(kWarpSize, Warps);
- auto kernel = tinygemm_m16n8k16_chunk_kernel<ALayout_RM, BLayout_D4, ALayout_RM, 8, 8>;
- kernel<<<grid, block, 0, stream>>>(
- (const half*)A.data_ptr(),
- (const void*)B.data_ptr(),
- (const uint64_t*)CB.data_ptr(),
- (half*)C_final.data_ptr(),
- m,
- n,
- k,
- mTiles,
- nTiles,
- kTiles);
- return C_final;
- #endif
- }
- at::Tensor e8p_mm_origorder(
- const at::Tensor& A,
- const at::Tensor& B,
- const at::Tensor& CB) {
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- c10::cuda::CUDAGuard g(A.device());
- auto stream = at::cuda::getCurrentCUDAStream();
- constexpr int Warps = 8;
- // row major layout
- auto m = A.size(0);
- auto mTiles = divUp(m, kMTileSize);
- // tensor core layout
- auto n = B.size(0);
- auto nTiles = divUp(n, kNTileSize);
- // row major layout
- auto k = A.size(1);
- auto kTiles = divUp(k, kKTileSize);
- // Output is a standard row-major matrix
- auto C_final = at::empty(
- {m, n}, at::TensorOptions().dtype(A.dtype()).device(A.device()));
- auto grid = dim3(1, nTiles, mTiles);
- auto block = dim3(kWarpSize, Warps);
- auto kernel = tinygemm_m16n8k16_chunk_kernel<ALayout_RM, BLayout_E8, ALayout_RM, 8, 8>;
- kernel<<<grid, block, 0, stream>>>(
- (const half*)A.data_ptr(),
- (const void*)B.data_ptr(),
- (const uint64_t*)CB.data_ptr(),
- (half*)C_final.data_ptr(),
- m,
- n,
- k,
- mTiles,
- nTiles,
- kTiles);
- return C_final;
- #endif
- }
- at::Tensor hi_mm_origorder(
- const at::Tensor& A,
- const at::Tensor& B) {
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- c10::cuda::CUDAGuard g(A.device());
- auto stream = at::cuda::getCurrentCUDAStream();
- constexpr int Warps = 8;
- // row major layout
- auto m = A.size(0);
- auto mTiles = divUp(m, kMTileSize);
- // tensor core layout
- auto n = B.size(0);
- auto nTiles = divUp(n, kNTileSize);
- // row major layout
- auto k = A.size(1);
- auto kTiles = divUp(k, kKTileSize);
- // Output is a standard row-major matrix
- auto C_final = at::empty(
- {m, n}, at::TensorOptions().dtype(A.dtype()).device(A.device()));
- auto grid = dim3(1, nTiles, mTiles);
- auto block = dim3(kWarpSize, Warps);
- auto kernel = tinygemm_m16n8k16_chunk_kernel<ALayout_RM, BLayout_HI, ALayout_RM, 8, 8>;
- kernel<<<grid, block, 0, stream>>>(
- (const half*)A.data_ptr(),
- (const void*)B.data_ptr(),
- nullptr,
- (half*)C_final.data_ptr(),
- m,
- n,
- k,
- mTiles,
- nTiles,
- kTiles);
- return C_final;
- #endif
- }
- #define DECOMPRESS_D4_BLOCK_SIZE 256
- __global__ void cuda_decompress_d4_origorder_kernel(
- const uint8_t* __restrict__ YIs, // m x (n/4)
- const c10::Half* __restrict__ CB, // 256 x 4
- c10::Half* __restrict__ Y // m x n
- ) {
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- const long i = threadIdx.x + DECOMPRESS_D4_BLOCK_SIZE * blockIdx.x;
- for(long r = 0; r < 4; r++) {
- uint8_t yidx = ((uint8_t*)YIs)[i*4 + r];
- ((uint64_t*)Y)[i*4 + r] = ((uint64_t*)CB)[yidx & 255];
- }
- #endif
- }
- void decompress_d4_origorder(
- torch::Tensor YIs, // m x (n/4)
- torch::Tensor CB, // 256 x 4
- torch::Tensor Y // m x n
- ) {
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- size_t m = Y.sizes()[0];
- size_t n = Y.sizes()[1];
- assert(YIs.is_contiguous());
- assert(CB.is_contiguous());
- assert(Y.is_contiguous());
- assert(YIs.sizes()[0] == m);
- assert(YIs.sizes()[1] * 4 == n);
- assert(CB.sizes()[0] == 256);
- const dim3 threads(DECOMPRESS_D4_BLOCK_SIZE);
- const dim3 blocks(m*n/(16*DECOMPRESS_D4_BLOCK_SIZE));
- cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
- cuda_decompress_d4_origorder_kernel<<<blocks, threads, 0, stream>>>(
- YIs.data_ptr<uint8_t>(),
- CB.data_ptr<c10::Half>(),
- Y.data_ptr<c10::Half>()
- );
- #endif
- }
- #define DECOMPRESS_E8P_BLOCK_SIZE 256
- __global__ void cuda_decompress_e8p_origorder_kernel(
- const int16_t* __restrict__ YIs, // m x (n/8)
- const int64_t* __restrict__ CB, // 256 x 8
- c10::Half* __restrict__ Y // m x n
- ) {
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- const long i = threadIdx.x + DECOMPRESS_E8P_BLOCK_SIZE * blockIdx.x;
- uint16_t yidx = ((uint16_t*)YIs)[i];
- uint64_t decoded = BLayout_E8::decode8weights(yidx, CB);
- half2 unpacked[2][2];
- uint64_t lower_half = decoded & 0x00ff00ff00ff00ff;
- lower_half = (lower_half ^ 0x5c805c805c805c80);
- memcpy(unpacked[0], &lower_half, sizeof(uint64_t));
- uint64_t upper_half = (decoded & 0xff00ff00ff00ff00) >> 8;
- upper_half = (upper_half ^ 0x5c805c805c805c80);
- memcpy(unpacked[1], &upper_half, sizeof(uint64_t));
- const half adjust_ = __float2half_rn(-288.0f);
- const half2 adjust = __halves2half2(adjust_, adjust_);
- ((__half2*)Y)[i*4] = __hadd2(unpacked[0][0], adjust); // 01
- ((__half2*)Y)[i*4+2] = __hadd2(unpacked[0][1], adjust); // 45
- ((__half2*)Y)[i*4+1] = __hadd2(unpacked[1][0], adjust); // 23
- ((__half2*)Y)[i*4+3] = __hadd2(unpacked[1][1], adjust); // 67
- #endif
- }
- void decompress_e8p_origorder(
- torch::Tensor YIs, // m x (n/8)
- torch::Tensor CB, // 256 x 8
- torch::Tensor &Y // m x n
- ) {
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- size_t m = Y.sizes()[0];
- size_t n = Y.sizes()[1];
- assert(YIs.is_contiguous());
- assert(CB.is_contiguous());
- assert(Y.is_contiguous());
- assert(YIs.sizes()[0] == m);
- assert(YIs.sizes()[1] * 8 == n);
- assert(CB.sizes()[0] == 256);
- const dim3 threads(DECOMPRESS_E8P_BLOCK_SIZE);
- const dim3 blocks(m*n/(8*DECOMPRESS_E8P_BLOCK_SIZE));
- cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
- cuda_decompress_e8p_origorder_kernel<<<blocks, threads, 0, stream>>>(
- YIs.data_ptr<int16_t>(),
- CB.data_ptr<int64_t>(),
- Y.data_ptr<c10::Half>()
- );
- #endif
- }
- #define DECOMPRESS_HI_BLOCK_SIZE 256
- __global__ void cuda_decompress_hi_origorder_kernel(
- const uint32_t* __restrict__ YIs, // m x (n/8)
- c10::Half* __restrict__ Y // m x n
- ) {
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- const long i = threadIdx.x + DECOMPRESS_HI_BLOCK_SIZE * blockIdx.x;
- uint32_t qa = YIs[i];
- const uint32_t c0 = 0x64086408;
- const half y16_ = __float2half_rn(1.0f / 16.0f);
- const half2 y16 = __halves2half2(y16_, y16_);
- const half z16_ = __float2half_rn(-1024.0f / 16.0f - 8.0f);
- const half2 z16 = __halves2half2(z16_, z16_);
- uint32_t q0 = (((qa & 0x000f000f) << 4) | c0);
- uint32_t q1 = ((qa & 0x00f000f0)| c0);
- qa >>= 8;
- uint32_t q2 = (((qa & 0x000f000f) << 4) | c0);
- uint32_t q3 = ((qa & 0x00f000f0) | c0);
- ((__half2*)Y)[i*4] = __hfma2(*((half2*)(&q0)), y16, z16);
- ((__half2*)Y)[i*4+1] = __hfma2(*((half2*)(&q1)), y16, z16);
- ((__half2*)Y)[i*4+2] = __hfma2(*((half2*)(&q2)), y16, z16);
- ((__half2*)Y)[i*4+3] = __hfma2(*((half2*)(&q3)), y16, z16);
- #endif
- }
- void decompress_hi_origorder(
- torch::Tensor YIs, // m x (n/8)
- torch::Tensor Y // m x n
- ){
- #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800
- size_t m = Y.sizes()[0];
- size_t n = Y.sizes()[1];
- assert(YIs.is_contiguous());
- assert(Y.is_contiguous());
- assert(YIs.sizes()[0] == m);
- assert(YIs.sizes()[1] * 8 == n);
- const dim3 threads(DECOMPRESS_HI_BLOCK_SIZE);
- const dim3 blocks(m*n/(8*DECOMPRESS_HI_BLOCK_SIZE));
- cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
- cuda_decompress_hi_origorder_kernel<<<blocks, threads, 0, stream>>>(
- (uint32_t*)YIs.data_ptr<int32_t>(),
- Y.data_ptr<c10::Half>()
- );
- #endif
- }
|