123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537 |
- from dataclasses import dataclass
- from typing import Dict, List, Tuple, Optional
- import random
- import torch
- from aphrodite.modeling.layers.ops.sample import (get_num_triton_sampler_splits
- )
- from aphrodite.common.sampling_params import SamplingParams, SamplingType
- from aphrodite.common.sequence import SequenceData
- from aphrodite.common.utils import is_pin_memory_available
- _SAMPLING_EPS = 1e-5
- _SEED_0_REPLACEMENT = 3403598558
- class PersistentMetadata:
- def __init__(self, metadata: Optional[Dict[int, dict]] = None):
- self._metadata: Dict[int, dict] = metadata or {}
- def get(self, seq_id: int) -> dict:
- return self._metadata.get(seq_id, {})
- class OutputMetadata(PersistentMetadata):
- def add(self, seq_id: int, key, val) -> None:
- if seq_id not in self._metadata:
- self._metadata[seq_id] = {}
- self._metadata[seq_id][key] = val
- class SamplingMetadata:
- """Metadata for input sequences. Used in sampler.
- Args:
- seq_groups: List of (seq_ids, sampling_params).
- seq_data: Seq_id -> SequenceData.
- prompt_lens: Lengths of prompts.
- selected_token_indices: Token indices selected for sampling.
- categorized_sample_indices: SamplingType -> token indices to sample.
- generators: List of torch.Generators to use for seeded sampling
- perform_sampling: Whether to perform sampling. This option is used to
- make the sampling only happens in the driver worker, and disable
- sampling in other worker processes.
- persistent_metadata: Metadata that persists across iterations.
- output_metadata: the output metadata.
- """
- def __init__(
- self,
- seq_groups: Optional[List[Tuple[List[int], SamplingParams]]],
- seq_data: Optional[Dict[int, SequenceData]],
- prompt_lens: Optional[List[int]],
- selected_token_indices: torch.Tensor,
- categorized_sample_indices: Optional[Dict[SamplingType, torch.Tensor]],
- generators: Optional[List[torch.Generator]] = None,
- perform_sampling: bool = True,
- persistent_metadata: Optional[PersistentMetadata] = None,
- output_metadata: Optional[OutputMetadata] = None,
- ) -> None:
- self.seq_groups = seq_groups
- self.seq_data = seq_data
- self.prompt_lens = prompt_lens
- self.selected_token_indices = selected_token_indices
- self.categorized_sample_indices = categorized_sample_indices
- self.generators = generators
- self.perform_sampling = perform_sampling
- self.persistent_metadata = persistent_metadata or PersistentMetadata()
- self.output_metadata = output_metadata or OutputMetadata()
- self.num_prompts = len(prompt_lens) if prompt_lens is not None else 0
- def __repr__(self) -> str:
- return (
- "SamplingMetadata("
- f"seq_groups={self.seq_groups}, "
- f"seq_data={self.seq_data}, "
- f"prompt_lens={self.prompt_lens}, "
- f"selected_token_indices={self.selected_token_indices}, "
- f"categorized_sample_indices={self.categorized_sample_indices}, "
- f"perform_sampling={self.perform_sampling}, "
- f"persistent_metadata={self.persistent_metadata}, "
- f"output_metadata={self.output_metadata}) ")
- @dataclass
- class SamplingTensors:
- """Tensors for sampling."""
- temperatures: torch.Tensor
- top_ps: torch.Tensor
- top_ks: torch.Tensor
- top_as: torch.Tensor
- min_ps: torch.Tensor
- presence_penalties: torch.Tensor
- frequency_penalties: torch.Tensor
- repetition_penalties: torch.Tensor
- tfss: torch.Tensor
- eta_cutoffs: torch.Tensor
- epsilon_cutoffs: torch.Tensor
- typical_ps: torch.Tensor
- miro_taus: torch.Tensor
- miro_etas: torch.Tensor
- miro_mus: torch.Tensor
- miro_indices: torch.Tensor
- miro_seqids: List[int] # state writeback done CPU side
- dynatemp_mins: torch.Tensor
- dynatemp_maxs: torch.Tensor
- dynatemp_exps: torch.Tensor
- smoothing_factors: torch.Tensor
- smoothing_curves: torch.Tensor
- sampling_seeds: torch.Tensor
- sample_indices: torch.Tensor
- extra_seeds: Optional[torch.Tensor]
- prompt_tokens: torch.Tensor
- output_tokens: torch.Tensor
- @classmethod
- def from_sampling_metadata(
- cls,
- sampling_metadata: "SamplingMetadata",
- vocab_size: int,
- device: torch.device,
- dtype: torch.dtype,
- *,
- extra_seeds_to_generate: int = 0,
- extra_entropy: Optional[Tuple[int, ...]] = None
- ) -> Tuple["SamplingTensors", bool, bool, bool, bool, bool, bool, bool,
- bool, bool, bool, bool, bool]:
- prompt_tokens: List[List[int]] = []
- output_tokens: List[List[int]] = []
- top_ks: List[int] = []
- temperatures: List[float] = []
- top_ps: List[float] = []
- top_as: List[float] = []
- min_ps: List[float] = []
- presence_penalties: List[float] = []
- frequency_penalties: List[float] = []
- repetition_penalties: List[float] = []
- tfss: List[float] = []
- eta_cutoffs: List[float] = []
- epsilon_cutoffs: List[float] = []
- typical_ps: List[float] = []
- miro_taus: List[float] = []
- miro_etas: List[float] = []
- miro_mus: List[float] = []
- miro_indices: List[int] = []
- miro_seqids: List[int] = []
- dynatemp_mins: List[float] = []
- dynatemp_maxs: List[float] = []
- dynatemp_exps: List[float] = []
- smoothing_factors: List[float] = []
- smoothing_curves: List[float] = []
- sampling_seeds: List[int] = []
- sample_indices: List[int] = []
- prompt_best_of: List[int] = []
- index = 0 # temporary, needed for building miro_indices
- do_temperatures = False
- do_penalties = False
- do_topks = False
- do_topps = False
- do_topas = False
- do_minps = False
- do_tfss = False
- do_eta_cutoffs = False
- do_epsilon_cutoffs = False
- do_typical_ps = False
- do_quadratic = False
- do_mirostat = False
- # We need one base seed per Triton slice.
- seeds_to_generate = (extra_seeds_to_generate +
- get_num_triton_sampler_splits(vocab_size))
- sample_indices_start_idx = 0
- for i, seq_group in enumerate(sampling_metadata.seq_groups):
- seq_ids, sampling_params = seq_group
- temperature = sampling_params.temperature
- p = sampling_params.presence_penalty
- f = sampling_params.frequency_penalty
- r = sampling_params.repetition_penalty
- top_p = sampling_params.top_p
- # k should not be greater than the vocab size
- top_k = min(sampling_params.top_k, vocab_size)
- top_k = vocab_size if top_k == -1 else top_k
- top_a = sampling_params.top_a
- min_p = sampling_params.min_p
- tfs = sampling_params.tfs
- eta_cutoff = sampling_params.eta_cutoff
- epsilon_cutoff = sampling_params.epsilon_cutoff
- typical_p = sampling_params.typical_p
- miro_tau = sampling_params.mirostat_tau
- miro_eta = sampling_params.mirostat_eta
- dynatemp_min = sampling_params.dynatemp_min
- dynatemp_max = sampling_params.dynatemp_max
- dynatemp_exp = sampling_params.dynatemp_exponent
- smoothing_factor = sampling_params.smoothing_factor
- smoothing_curve = sampling_params.smoothing_curve
- seed = sampling_params.seed
- is_greedy = sampling_params.sampling_type == SamplingType.GREEDY
- if do_temperatures is False and temperature > _SAMPLING_EPS:
- do_temperatures = True
- if not do_penalties and (abs(p) >= _SAMPLING_EPS
- or abs(f) >= _SAMPLING_EPS
- or abs(r - 1.0) >= _SAMPLING_EPS):
- do_penalties = True
- if do_topks is False and top_k != vocab_size:
- do_topks = True
- if do_topps is False and top_p < 1.0 - _SAMPLING_EPS:
- do_topps = True
- if do_topas is False and top_a > 0.0:
- do_topas = True
- if do_minps is False and min_p > _SAMPLING_EPS:
- do_minps = True
- if do_tfss is False and tfs < 1.0 - _SAMPLING_EPS:
- do_tfss = True
- if do_eta_cutoffs is False and eta_cutoff > _SAMPLING_EPS:
- do_eta_cutoffs = True
- if do_epsilon_cutoffs is False and epsilon_cutoff > _SAMPLING_EPS:
- do_epsilon_cutoffs = True
- if do_typical_ps is False and typical_p < 1.0 - _SAMPLING_EPS:
- do_typical_ps = True
- if do_quadratic is False and (smoothing_factor > _SAMPLING_EPS
- or smoothing_curve > 1.0):
- do_quadratic = True
- if do_mirostat is False and sampling_params.mirostat_mode == 2:
- do_mirostat = True
- if (i < sampling_metadata.num_prompts
- and sampling_params.prompt_logprobs is not None):
- # For tokens in the prompt that we only need to get their
- # logprobs
- prompt_len = sampling_metadata.prompt_lens[i]
- index += sampling_metadata.prompt_lens[i] - 1
- temperatures += [temperature] * (prompt_len - 1)
- top_ps += [top_p] * (prompt_len - 1)
- top_ks += [top_k] * (prompt_len - 1)
- top_as += [top_a] * (prompt_len - 1)
- min_ps += [min_p] * (prompt_len - 1)
- presence_penalties += [0] * (prompt_len - 1)
- frequency_penalties += [0] * (prompt_len - 1)
- repetition_penalties += [1] * (prompt_len - 1)
- tfss += [1] * (prompt_len - 1)
- eta_cutoffs += [0] * (prompt_len - 1)
- epsilon_cutoffs += [0] * (prompt_len - 1)
- typical_ps += [1] * (prompt_len - 1)
- dynatemp_mins += [dynatemp_min] * (prompt_len - 1)
- dynatemp_maxs += [dynatemp_max] * (prompt_len - 1)
- dynatemp_exps += [dynatemp_exp] * (prompt_len - 1)
- smoothing_factors += [smoothing_factor] * (prompt_len - 1)
- smoothing_curves += [smoothing_curve] * (prompt_len - 1)
- prompt_tokens.extend([] for _ in range(prompt_len - 1))
- output_tokens.extend([] for _ in range(prompt_len - 1))
- for seq_id in seq_ids:
- seq_data = sampling_metadata.seq_data[seq_id]
- prompt_tokens.append(seq_data.prompt_token_ids)
- output_tokens.append(seq_data.output_token_ids)
- temperatures += [temperature] * len(seq_ids)
- top_ps += [top_p] * len(seq_ids)
- top_ks += [top_k] * len(seq_ids)
- top_as += [top_a] * len(seq_ids)
- min_ps += [min_p] * len(seq_ids)
- presence_penalties += [p] * len(seq_ids)
- frequency_penalties += [f] * len(seq_ids)
- repetition_penalties += [r] * len(seq_ids)
- tfss += [tfs] * len(seq_ids)
- eta_cutoffs += [eta_cutoff] * len(seq_ids)
- epsilon_cutoffs += [epsilon_cutoff] * len(seq_ids)
- typical_ps += [typical_p] * len(seq_ids)
- dynatemp_mins += [dynatemp_min] * len(seq_ids)
- dynatemp_maxs += [dynatemp_max] * len(seq_ids)
- dynatemp_exps += [dynatemp_exp] * len(seq_ids)
- smoothing_factors += [smoothing_factor] * len(seq_ids)
- smoothing_curves += [smoothing_curve] * len(seq_ids)
- if sampling_params.mirostat_mode == 2:
- miro_indices += [(index + i) for i in range(len(seq_ids))]
- miro_seqids += seq_ids
- miro_taus += [miro_tau] * len(seq_ids)
- miro_etas += [miro_eta] * len(seq_ids)
- miro_mus += [
- sampling_metadata.persistent_metadata.get(sid).get(
- "miro_mu", sampling_params.mirostat_tau * 2)
- for sid in seq_ids
- ]
- index += len(seq_ids)
- is_prompt = i < sampling_metadata.num_prompts
- if is_prompt:
- prompt_best_of.append(sampling_params.best_of)
- prompt_len = sampling_metadata.prompt_lens[i]
- if sampling_params.prompt_logprobs is not None:
- # NOTE: the sampling position is the last token
- # in the prompt
- sample_indices_start_idx += prompt_len - 1
- for seq_id in seq_ids:
- seq_data = sampling_metadata.seq_data[seq_id]
- extra_entropy = extra_entropy or ()
- seq_seeds = cls._get_sequence_seeds(
- seed,
- seq_data.get_len(),
- *extra_entropy,
- seq_id,
- seeds_to_generate=seeds_to_generate,
- is_greedy=is_greedy)
- sampling_seeds.append(seq_seeds)
- sample_indices.append(sample_indices_start_idx)
- sample_indices_start_idx += 1
- sampling_tensors = SamplingTensors.from_lists(
- temperatures, top_ps, top_ks, top_as, min_ps, presence_penalties,
- frequency_penalties, repetition_penalties, tfss, eta_cutoffs,
- epsilon_cutoffs, typical_ps, dynatemp_mins, dynatemp_maxs,
- dynatemp_exps, miro_taus, miro_etas, miro_mus, miro_indices,
- miro_seqids, smoothing_factors, smoothing_curves, sampling_seeds,
- sample_indices, prompt_tokens, output_tokens, vocab_size,
- extra_seeds_to_generate, device, dtype)
- return (sampling_tensors, do_temperatures, do_penalties, do_topks,
- do_topps, do_topas, do_minps, do_tfss, do_eta_cutoffs,
- do_epsilon_cutoffs, do_typical_ps, do_quadratic, do_mirostat)
- @classmethod
- def from_lists(cls, temperatures: List[float], top_ps: List[float],
- top_ks: List[int], top_as: List[float], min_ps: List[float],
- presence_penalties: List[float],
- frequency_penalties: List[float],
- repetition_penalties: List[float], tfss: List[float],
- eta_cutoffs: List[float], epsilon_cutoffs: List[float],
- typical_ps: List[float], dynatemp_mins: List[float],
- dynatemp_maxs: List[float], dynatemp_exps: List[float],
- miro_taus: List[float], miro_etas: List[float],
- miro_mus: List[float], miro_indices: List[int],
- miro_seqids: List[int], smoothing_factors: List[float],
- smoothing_curves: List[float], sampling_seeds: List[int],
- sample_indices: List[int], prompt_tokens: List[List[int]],
- output_tokens: List[List[int]], vocab_size: int,
- extra_seeds_to_generate: int, device: torch.device,
- dtype: torch.dtype) -> "SamplingTensors":
- # Note that the performance will be very bad without
- # pinned memory.
- pin_memory = is_pin_memory_available()
- prompt_max_len = max(len(tokens) for tokens in prompt_tokens)
- prompt_padded_tokens = [
- tokens + [vocab_size] * (prompt_max_len - len(tokens))
- for tokens in prompt_tokens
- ]
- output_max_len = max(len(tokens) for tokens in output_tokens)
- output_padded_tokens = [
- tokens + [vocab_size] * (output_max_len - len(tokens))
- for tokens in output_tokens
- ]
- temperatures_t = torch.tensor(temperatures,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- top_ps_t = torch.tensor(top_ps,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- top_ks_t = torch.tensor(top_ks,
- device="cpu",
- dtype=torch.int,
- pin_memory=pin_memory)
- top_as_t = torch.tensor(top_as,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- min_ps_t = torch.tensor(min_ps,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- presence_penalties_t = torch.tensor(presence_penalties,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- frequency_penalties_t = torch.tensor(frequency_penalties,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- repetition_penalties_t = torch.tensor(repetition_penalties,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- tfss_t = torch.tensor(tfss,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- eta_cutoffs_t = torch.tensor(eta_cutoffs,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- epsilon_cutoffs_t = torch.tensor(epsilon_cutoffs,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- typical_ps_t = torch.tensor(typical_ps,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- dynatemp_mins_t = torch.tensor(dynatemp_mins,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- dynatemp_maxs_t = torch.tensor(dynatemp_maxs,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- dynatemp_exps_t = torch.tensor(dynatemp_exps,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- smoothing_factors_t = torch.tensor(smoothing_factors,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- smoothing_curves_t = torch.tensor(smoothing_curves,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- miro_taus_t = torch.tensor(miro_taus,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- miro_etas_t = torch.tensor(miro_etas,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- miro_mus_t = torch.tensor(miro_mus,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- miro_indices_t = torch.tensor(miro_indices,
- device="cpu",
- dtype=torch.int,
- pin_memory=pin_memory)
- sample_indices_t = torch.tensor(sample_indices,
- device="cpu",
- dtype=torch.int,
- pin_memory=pin_memory)
- prompt_tensor = torch.tensor(prompt_padded_tokens,
- device=device,
- dtype=torch.long,
- pin_memory=pin_memory)
- output_tensor = torch.tensor(output_padded_tokens,
- device=device,
- dtype=torch.long,
- pin_memory=pin_memory)
- # need to transpose and make contiguous to
- # copy the tensor correctly.
- # [batch_size, n_seeds] -> [n_seeds, batch_size]
- sampling_seeds_t = torch.tensor(
- sampling_seeds,
- device="cpu",
- dtype=torch.long,
- pin_memory=pin_memory,
- ).T.contiguous()
- # Because the memory is pinned, we can do non-blocking
- # transfer to device.
- # How many seeds the sample operation itself will need.
- num_base_seeds = sampling_seeds_t.shape[0] - extra_seeds_to_generate
- sampling_seeds_gpu = sampling_seeds_t.to(device=device,
- non_blocking=True)
- extra_seeds_gpu = sampling_seeds_gpu[num_base_seeds:]
- if not extra_seeds_gpu.numel():
- extra_seeds_gpu = None
- sampling_seeds_gpu = sampling_seeds_gpu[:num_base_seeds]
- return cls(
- temperatures=temperatures_t.to(device=device, non_blocking=True),
- top_ps=top_ps_t.to(device=device, non_blocking=True),
- top_ks=top_ks_t.to(device=device, non_blocking=True),
- top_as=top_as_t.to(device=device, non_blocking=True),
- min_ps=min_ps_t.to(device=device, non_blocking=True),
- presence_penalties=presence_penalties_t.to(device=device,
- non_blocking=True),
- frequency_penalties=frequency_penalties_t.to(device=device,
- non_blocking=True),
- repetition_penalties=repetition_penalties_t.to(device=device,
- non_blocking=True),
- tfss=tfss_t.to(device=device, non_blocking=True),
- eta_cutoffs=eta_cutoffs_t.to(device=device, non_blocking=True),
- epsilon_cutoffs=epsilon_cutoffs_t.to(device=device,
- non_blocking=True),
- dynatemp_mins=dynatemp_mins_t.to(device=device, non_blocking=True),
- dynatemp_maxs=dynatemp_maxs_t.to(device=device, non_blocking=True),
- dynatemp_exps=dynatemp_exps_t.to(device=device, non_blocking=True),
- smoothing_factors=smoothing_factors_t.to(device=device,
- non_blocking=True),
- smoothing_curves=smoothing_curves_t.to(device=device,
- non_blocking=True),
- miro_taus=miro_taus_t.to(device=device, non_blocking=True),
- miro_etas=miro_etas_t.to(device=device, non_blocking=True),
- miro_mus=miro_mus_t.to(device=device, non_blocking=True),
- miro_indices=miro_indices_t.to(device=device, non_blocking=True),
- miro_seqids=miro_seqids,
- typical_ps=typical_ps_t.to(device=device, non_blocking=True),
- prompt_tokens=prompt_tensor.to(device=device, non_blocking=True),
- output_tokens=output_tensor.to(device=device, non_blocking=True),
- sampling_seeds=sampling_seeds_gpu,
- sample_indices=sample_indices_t.to(device=device,
- non_blocking=True),
- extra_seeds=extra_seeds_gpu,
- )
- @staticmethod
- def _get_sequence_seeds(
- seed: int,
- *extra_entropy: int,
- seeds_to_generate: int,
- is_greedy: bool,
- ):
- """Get `seeds_to_generate` child seeds from `seed` and extra entropy."""
- if not is_greedy:
- if seed is None:
- randint_fn = random.randint
- else:
- generator = random.Random(str((seed, ) + extra_entropy))
- randint_fn = generator.randint
- lo, hi = torch.iinfo(torch.long).min, torch.iinfo(torch.long).max
- # If the user/random sets seed = 0 but request should
- # have sampling, we need to change it to something
- # else. We use a constant in that case.
- # This way we don't need to create and load a bool
- # matrix in the sampling kernel, which reduces CPU
- # overhead and latency.
- seq_seeds = [
- randint_fn(lo, hi) or _SEED_0_REPLACEMENT
- for _ in range(seeds_to_generate)
- ]
- else:
- # For the kernel, seed == 0 means greedy decoding.
- seq_seeds = [0] * seeds_to_generate
- return seq_seeds
|