123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564 |
- # coding=utf-8
- # Adapted from
- # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
- # Copyright 2023 The PygmalionAI team.
- # Copyright 2023 The vLLM team.
- # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
- #
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
- # and OPT implementations in this library. It has been modified from its
- # original forms to accommodate minor architectural differences compared
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Inference-only Mixtral model."""
- from typing import List, Optional
- import numpy as np
- import torch
- from torch import nn
- from transformers import MixtralConfig
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.config import LoRAConfig
- from aphrodite.modeling.layers.fused_moe import fused_topk
- from aphrodite.modeling.layers.layernorm import RMSNorm
- from aphrodite.modeling.layers.linear import (
- ColumnParallelLinear, LinearMethodBase, MergedColumnParallelLinear,
- QKVParallelLinear, ReplicatedLinear, RowParallelLinear,
- UnquantizedLinearMethod)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.rotary_embedding import get_rope
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
- from aphrodite.distributed import (tensor_model_parallel_all_reduce)
- from aphrodite.distributed import (get_tensor_model_parallel_rank,
- get_tensor_model_parallel_world_size)
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.modeling.hf_downloader import (default_weight_loader,
- hf_model_weights_iterator)
- from aphrodite.common.sequence import SamplerOutput
- class MixtralMLP(nn.Module):
- def __init__(
- self,
- num_experts: int,
- hidden_size: int,
- intermediate_size: int,
- linear_method: Optional[LinearMethodBase] = None,
- ) -> None:
- super().__init__()
- self.num_experts = num_experts
- self.ffn_dim = intermediate_size
- self.hidden_dim = hidden_size
- self.w1 = ReplicatedLinear(self.hidden_dim,
- self.ffn_dim,
- bias=False,
- linear_method=linear_method)
- self.w2 = ReplicatedLinear(self.ffn_dim,
- self.hidden_dim,
- bias=False,
- linear_method=linear_method)
- self.w3 = ReplicatedLinear(self.hidden_dim,
- self.ffn_dim,
- bias=False,
- linear_method=linear_method)
- # TODO: Use aphrodite's SiluAndMul
- self.act_fn = nn.SiLU()
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- w1_out, _ = self.w1(hidden_states)
- w1_out = self.act_fn(w1_out)
- w3_out, _ = self.w3(hidden_states)
- current_hidden_states = w1_out * w3_out
- current_hidden_states, _ = self.w2(current_hidden_states)
- return current_hidden_states
- class MixtralMoE(nn.Module):
- """A tensor-parallel MoE implementation for Mixtral that shards each expert
- across all ranks.
- Each expert's weights are sharded across all ranks and a fused MoE
- kernel is used for the forward pass, and finally we reduce the outputs
- across ranks.
- """
- def __init__(
- self,
- num_experts: int,
- top_k: int,
- hidden_size: int,
- intermediate_size: int,
- tp_size: Optional[int] = None,
- linear_method: Optional[LinearMethodBase] = None,
- ):
- super().__init__()
- self.rank = get_tensor_model_parallel_rank()
- self.tp_size = tp_size or get_tensor_model_parallel_world_size()
- self.num_total_experts = num_experts
- self.top_k = top_k
- self.hidden_size = hidden_size
- self.intermediate_size = intermediate_size // self.tp_size
- self.linear_method = linear_method
- if self.linear_method is None:
- self.linear_method = UnquantizedLinearMethod()
- self.gate = ReplicatedLinear(self.hidden_size,
- self.num_total_experts,
- bias=False,
- linear_method=None)
- if not isinstance(
- self.linear_method, UnquantizedLinearMethod
- ) and not self.linear_method.quant_config.support_fused_moe():
- if self.tp_size > self.num_total_experts:
- raise ValueError(
- f"Tensor parallel size {self.tp_size} is greater than "
- f"the number of experts {self.num_total_experts}.")
- # Split experts equally between ranks
- self.expert_indicies = np.array_split(
- range(self.num_total_experts),
- self.tp_size)[self.rank].tolist()
- if not self.expert_indicies:
- raise ValueError(
- f"Rank {self.rank} has no experts assigned to it.")
- self.experts = nn.ModuleList([
- MixtralMLP(self.num_total_experts,
- hidden_size,
- intermediate_size,
- linear_method=linear_method)
- if idx in self.expert_indicies else None
- for idx in range(self.num_total_experts)
- ])
- else:
- self.ws = MergedColumnParallelLinear(hidden_size,
- [intermediate_size] * 2,
- bias=False,
- linear_method=linear_method,
- num_experts=num_experts)
- self.w2s = RowParallelLinear(intermediate_size,
- hidden_size,
- bias=False,
- linear_method=linear_method,
- num_experts=num_experts)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- num_tokens, hidden_size = hidden_states.shape
- hidden_states = hidden_states.view(-1, self.hidden_size)
- # router_logits: (num_tokens, n_experts)
- router_logits, _ = self.gate(hidden_states)
- if not isinstance(
- self.linear_method, UnquantizedLinearMethod
- ) and not self.linear_method.quant_config.support_fused_moe():
- routing_weights, selected_experts = fused_topk(router_logits,
- self.top_k,
- renormalize=True)
- final_hidden_states = None
- for expert_idx in self.expert_indicies:
- expert_layer = self.experts[expert_idx]
- expert_mask = (selected_experts == expert_idx)
- expert_weights = (routing_weights * expert_mask).sum(
- dim=-1, keepdim=True)
- current_hidden_states = expert_layer(hidden_states).mul_(
- expert_weights)
- if final_hidden_states is None:
- final_hidden_states = current_hidden_states
- else:
- final_hidden_states.add_(current_hidden_states)
- else:
- final_hidden_states = self.linear_method.apply_moe_weights(
- self.ws.linear_weights,
- self.w2s.linear_weights,
- hidden_states,
- router_logits,
- self.top_k,
- renormalize=True,
- )
- if self.tp_size > 1:
- final_hidden_states = tensor_model_parallel_all_reduce(
- final_hidden_states)
- return final_hidden_states.view(num_tokens, hidden_size)
- class MixtralAttention(nn.Module):
- def __init__(self,
- hidden_size: int,
- num_heads: int,
- num_kv_heads: int,
- max_position: int = 4096 * 32,
- rope_theta: float = 10000,
- linear_method: Optional[LinearMethodBase] = None,
- sliding_window: Optional[int] = None) -> None:
- super().__init__()
- self.hidden_size = hidden_size
- tp_size = get_tensor_model_parallel_world_size()
- self.total_num_heads = num_heads
- assert self.total_num_heads % tp_size == 0
- self.num_heads = self.total_num_heads // tp_size
- self.total_num_kv_heads = num_kv_heads
- if self.total_num_kv_heads >= tp_size:
- # Number of KV heads is greater than TP size, so we partition
- # the KV heads across multiple tensor parallel GPUs.
- assert self.total_num_kv_heads % tp_size == 0
- else:
- # Number of KV heads is less than TP size, so we replicate
- # the KV heads across multiple tensor parallel GPUs.
- assert tp_size % self.total_num_kv_heads == 0
- self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
- self.head_dim = hidden_size // self.total_num_heads
- self.q_size = self.num_heads * self.head_dim
- self.kv_size = self.num_kv_heads * self.head_dim
- self.scaling = self.head_dim**-0.5
- self.rope_theta = rope_theta
- self.sliding_window = sliding_window
- if (linear_method is not None
- and not linear_method.quant_config.merge_weight()):
- self.merge_weight = False
- self.q_proj = ColumnParallelLinear(hidden_size,
- self.total_num_heads *
- self.head_dim,
- bias=False,
- linear_method=linear_method)
- self.k_proj = ColumnParallelLinear(hidden_size,
- self.total_num_kv_heads *
- self.head_dim,
- bias=False,
- linear_method=linear_method)
- self.v_proj = ColumnParallelLinear(hidden_size,
- self.total_num_kv_heads *
- self.head_dim,
- bias=False,
- linear_method=linear_method)
- else:
- self.merge_weight = True
- self.qkv_proj = QKVParallelLinear(
- hidden_size,
- self.head_dim,
- self.total_num_heads,
- self.total_num_kv_heads,
- bias=False,
- linear_method=linear_method,
- )
- self.o_proj = RowParallelLinear(
- self.total_num_heads * self.head_dim,
- hidden_size,
- bias=False,
- linear_method=linear_method,
- )
- self.rotary_emb = get_rope(
- self.head_dim,
- rotary_dim=self.head_dim,
- max_position=max_position,
- base=int(self.rope_theta),
- is_neox_style=True,
- )
- self.attn = Attention(
- self.num_heads,
- self.head_dim,
- self.scaling,
- num_kv_heads=self.num_kv_heads,
- sliding_window=self.sliding_window,
- )
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- if self.merge_weight:
- qkv, _ = self.qkv_proj(hidden_states)
- q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size],
- dim=-1)
- else:
- q, _ = self.q_proj(hidden_states)
- k, _ = self.k_proj(hidden_states)
- v, _ = self.v_proj(hidden_states)
- q, k = self.rotary_emb(positions, q, k)
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
- output, _ = self.o_proj(attn_output)
- return output
- class MixtralDecoderLayer(nn.Module):
- def __init__(
- self,
- config: MixtralConfig,
- linear_method: Optional[LinearMethodBase] = None,
- ) -> None:
- super().__init__()
- self.hidden_size = config.hidden_size
- # Requires transformers > 4.32.0
- rope_theta = getattr(config, "rope_theta", 10000)
- self.self_attn = MixtralAttention(
- hidden_size=self.hidden_size,
- num_heads=config.num_attention_heads,
- max_position=config.max_position_embeddings,
- num_kv_heads=config.num_key_value_heads,
- rope_theta=rope_theta,
- sliding_window=config.sliding_window,
- linear_method=linear_method)
- self.block_sparse_moe = MixtralMoE(
- num_experts=config.num_local_experts,
- top_k=config.num_experts_per_tok,
- hidden_size=config.hidden_size,
- intermediate_size=config.intermediate_size,
- linear_method=linear_method)
- self.input_layernorm = RMSNorm(config.hidden_size,
- eps=config.rms_norm_eps)
- self.post_attention_layernorm = RMSNorm(config.hidden_size,
- eps=config.rms_norm_eps)
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- residual: Optional[torch.Tensor],
- ) -> torch.Tensor:
- # Self Attention
- if residual is None:
- residual = hidden_states
- hidden_states = self.input_layernorm(hidden_states)
- else:
- hidden_states, residual = self.input_layernorm(
- hidden_states, residual)
- hidden_states = self.self_attn(
- positions=positions,
- hidden_states=hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- # Fully Connected
- hidden_states, residual = self.post_attention_layernorm(
- hidden_states, residual)
- hidden_states = self.block_sparse_moe(hidden_states)
- return hidden_states, residual
- class MixtralModel(nn.Module):
- def __init__(
- self,
- config: MixtralConfig,
- linear_method: Optional[LinearMethodBase] = None,
- lora_config: Optional[LoRAConfig] = None,
- ) -> None:
- super().__init__()
- self.padding_idx = config.pad_token_id
- lora_vocab = (lora_config.lora_extra_vocab_size *
- (lora_config.max_loras or 1)) if lora_config else 0
- self.vocab_size = config.vocab_size + lora_vocab
- self.org_vocab_size = config.vocab_size
- self.embed_tokens = VocabParallelEmbedding(
- self.vocab_size,
- config.hidden_size,
- linear_method=linear_method,
- org_num_embeddings=config.vocab_size,
- )
- self.layers = nn.ModuleList([
- MixtralDecoderLayer(config, linear_method=linear_method)
- for _ in range(config.num_hidden_layers)
- ])
- self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states = self.embed_tokens(input_ids)
- residual = None
- for i in range(len(self.layers)):
- layer = self.layers[i]
- hidden_states, residual = layer(positions, hidden_states,
- kv_caches[i], attn_metadata,
- residual)
- hidden_states, _ = self.norm(hidden_states, residual)
- return hidden_states
- class MixtralForCausalLM(nn.Module):
- packed_modules_mapping = {
- "qkv_proj": [
- "q_proj",
- "k_proj",
- "v_proj",
- ],
- }
- # LoRA specific attributes
- supported_lora_modules = [
- "qkv_proj",
- "o_proj",
- "embed_tokens",
- "lm_head",
- ]
- embedding_modules = {
- "embed_tokens": "input_embeddings",
- "lm_head": "output_embeddings",
- }
- embedding_padding_modules = ["lm_head"]
- def __init__(
- self,
- config: MixtralConfig,
- linear_method: Optional[LinearMethodBase] = None,
- lora_config: Optional[LoRAConfig] = None,
- ) -> None:
- super().__init__()
- self.config = config
- self.linear_method = linear_method
- self.model = MixtralModel(config,
- linear_method,
- lora_config=lora_config)
- self.unpadded_vocab_size = config.vocab_size
- if lora_config:
- self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
- self.lm_head = ParallelLMHead(
- self.unpadded_vocab_size,
- config.hidden_size,
- linear_method=linear_method,
- org_num_embeddings=config.vocab_size,
- padding_size=DEFAULT_VOCAB_PADDING_SIZE
- # We need bigger padding if using lora for kernel
- # compatibility
- if not lora_config else lora_config.lora_vocab_padding_size,
- )
- self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
- config.vocab_size)
- self.sampler = Sampler()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states = self.model(input_ids, positions, kv_caches,
- attn_metadata)
- return hidden_states
- def compute_logits(self, hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata) -> torch.Tensor:
- logits = self.logits_processor(self.lm_head, hidden_states,
- sampling_metadata)
- return logits
- def sample(
- self,
- logits: Optional[torch.Tensor],
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def load_weights(self,
- model_name_or_path: str,
- cache_dir: Optional[str] = None,
- load_format: str = "auto",
- revision: Optional[str] = None):
- stacked_params_mapping = [
- # (param_name, shard_name, shard_id)
- ("qkv_proj", "q_proj", "q"),
- ("qkv_proj", "k_proj", "k"),
- ("qkv_proj", "v_proj", "v"),
- ]
- if (self.linear_method is not None
- and not self.linear_method.quant_config.merge_weight()):
- stacked_params_mapping = []
- expert_params_mapping = [
- # (param_name, weight_name, shard_id, expert_id)
- ("ws" if weight_name in ["w1", "w3"] else "w2s",
- f"experts.{expert_id}.{weight_name}", shard_id, expert_id)
- for expert_id in range(self.config.num_local_experts)
- for weight_name, shard_id in [("w1", 0), ("w3", 1), ("w2", None)]
- ] if self.linear_method is None or (
- self.linear_method.quant_config.support_fused_moe()) else []
- params_dict = dict(self.named_parameters())
- for name, loaded_weight in hf_model_weights_iterator(
- model_name_or_path,
- cache_dir,
- load_format,
- revision,
- self.config,
- fall_back_to_pt=False):
- if "rotary_emb.inv_freq" in name:
- continue
- for (param_name, weight_name, shard_id) in stacked_params_mapping:
- if weight_name not in name:
- continue
- name = name.replace(weight_name, param_name)
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = param.weight_loader
- weight_loader(param, loaded_weight, shard_id)
- break
- else:
- for (param_name, weight_name, shard_id,
- expert_id) in expert_params_mapping:
- if weight_name not in name:
- continue
- name = name.replace(weight_name, param_name)
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = param.weight_loader
- if shard_id is None:
- weight_loader(param,
- loaded_weight,
- expert_id=expert_id)
- else:
- weight_loader(param,
- loaded_weight,
- shard_id,
- expert_id=expert_id)
- break
- else:
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- # Skip experts that are not assigned to this worker.
- if ("block_sparse_moe.experts." in name
- and name not in params_dict):
- continue
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|