123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703 |
- from abc import ABC, abstractmethod
- from typing import Any, Dict, List, Optional
- import torch
- import torch.nn.functional as F
- from loguru import logger
- from torch.nn.parameter import Parameter
- from aphrodite.distributed import (
- divide,
- get_tensor_model_parallel_rank,
- get_tensor_model_parallel_world_size,
- split_tensor_along_last_dim,
- tensor_model_parallel_all_gather,
- tensor_model_parallel_all_reduce,
- )
- from aphrodite.modeling.layers.fused_moe import fused_moe
- from aphrodite.modeling.utils import set_weight_attrs
- def adjust_marlin_shard(param, shard_size, shard_offset):
- marlin_tile_size = getattr(param, "marlin_tile_size", None)
- if marlin_tile_size is None:
- return shard_size, shard_offset
- return shard_size * marlin_tile_size, shard_offset * marlin_tile_size
- class LinearMethodBase(ABC):
- """Base class for different (maybe quantized) linear methods."""
- @abstractmethod
- def create_weights(self, input_size_per_partition: int,
- output_partition_sizes: List[int], input_size: int,
- output_size: int,
- params_dtype: torch.dtype) -> Dict[str, Any]:
- """Create weights for a linear layer."""
- raise NotImplementedError
- @abstractmethod
- def apply_weights(self,
- weights: Dict[str, torch.Tensor],
- x: torch.Tensor,
- bias: Optional[torch.Tensor] = None) -> torch.Tensor:
- """Apply the weights to the input tensor."""
- raise NotImplementedError
- def create_moe_weights(self, num_experts: int,
- input_size_per_partition: int,
- output_partition_sizes: List[int], input_size: int,
- output_size: int,
- params_dtype: torch.dtype) -> Dict[str, Any]:
- """Creating moe weights"""
- linear_weights = self.create_weights(input_size_per_partition,
- output_partition_sizes,
- input_size, output_size,
- params_dtype)
- if num_experts == 1:
- return linear_weights
- for name, param in tuple(linear_weights.items()):
- if isinstance(param, Parameter):
- repeat_size = (num_experts, ) + (1, ) * param.dim()
- new_param = Parameter(param.unsqueeze(0).repeat(*repeat_size),
- requires_grad=False)
- set_weight_attrs(new_param, param.__dict__)
- linear_weights[name] = new_param
- return linear_weights
- @abstractmethod
- def apply_moe_weights(self, w1: Dict[str,
- torch.Tensor], w2: Dict[str,
- torch.Tensor],
- x: torch.Tensor, gating_output: torch.Tensor,
- topk: int, renormalize: bool) -> torch.Tensor:
- """Apply the weights to the input tensor."""
- raise NotImplementedError
- class UnquantizedLinearMethod(LinearMethodBase):
- """Linear method without quantization.
- Args:
- separate_bias_add: If true, add bias separately after matrix
- multiplication.
- """
- def __init__(self, separate_bias_add: bool = False):
- self.separate_bias_add = separate_bias_add
- def create_weights(self, input_size_per_partition: int,
- output_partition_sizes: List[int], input_size: int,
- output_size: int,
- params_dtype: torch.dtype) -> Dict[str, Any]:
- output_size_per_partition = sum(output_partition_sizes)
- weight = Parameter(torch.empty(output_size_per_partition,
- input_size_per_partition,
- dtype=params_dtype),
- requires_grad=False)
- set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
- return {"weight": weight}
- def apply_weights(self,
- weights: Dict[str, torch.Tensor],
- x: torch.Tensor,
- bias: Optional[torch.Tensor] = None) -> torch.Tensor:
- weight = weights["weight"]
- if self.separate_bias_add:
- if bias is not None:
- return F.linear(x, weight) + bias
- return F.linear(x, weight)
- return F.linear(x, weight, bias)
- def apply_embedding(self, weights: Dict[str, torch.Tensor],
- x: torch.Tensor) -> torch.Tensor:
- weight = weights["weight"]
- return F.embedding(x, weight)
- def apply_moe_weights(self, w1: Dict[str,
- torch.Tensor], w2: Dict[str,
- torch.Tensor],
- x: torch.Tensor, gating_output: torch.Tensor,
- topk: int, renormalize: bool) -> torch.Tensor:
- return fused_moe(x, w1["weight"], w2["weight"], gating_output, topk,
- renormalize)
- class ReplicatedLinear(torch.nn.Module):
- """Replicated linear layer.
- Args:
- input_size: input dimension of the linear layer.
- output_size: output dimension of the linear layer.
- bias: If true, add bias.
- skip_bias_add: If true, skip adding bias but instead return it.
- params_dtype: Data type for the parameters.
- linear_method: (Maybe quantized) linear method.
- """
- def __init__(
- self,
- input_size: int,
- output_size: int,
- bias: bool = True,
- skip_bias_add: bool = False,
- params_dtype: Optional[torch.dtype] = None,
- linear_method: Optional[LinearMethodBase] = None,
- ):
- super().__init__()
- # Keep input parameters
- self.input_size = input_size
- self.output_size = output_size
- self.skip_bias_add = skip_bias_add
- if params_dtype is None:
- params_dtype = torch.get_default_dtype()
- self.params_dtype = params_dtype
- if linear_method is None:
- linear_method = UnquantizedLinearMethod()
- self.linear_method = linear_method
- self.linear_weights = self.linear_method.create_weights(
- self.input_size, [self.output_size], self.input_size,
- self.output_size, self.params_dtype)
- for name, weight in self.linear_weights.items():
- if isinstance(weight, torch.nn.parameter.Parameter):
- self.register_parameter(name, weight)
- if bias:
- self.bias = Parameter(
- torch.empty(self.output_size, dtype=self.params_dtype))
- set_weight_attrs(self.bias, {"output_dim": 0})
- else:
- self.register_parameter("bias", None)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- bias = self.bias if not self.skip_bias_add else None
- output = self.linear_method.apply_weights(self.linear_weights, x, bias)
- output_bias = self.bias if self.skip_bias_add else None
- return output, output_bias
- class ColumnParallelLinear(torch.nn.Module):
- """Linear layer with column parallelism.
- The linear layer is defined as Y = XA + b. A is parallelized along
- its second dimension as A = [A_1, ..., A_p].
- Args:
- input_size: first dimension of matrix A.
- output_size: second dimension of matrix A.
- bias: If true, add bias.
- gather_output: If true, call all-gather on output and make Y available
- to all GPUs, otherwise, every GPU will have its output
- which is Y_i = XA_i
- skip_bias_add: This was added to enable performance optimizations where
- bias can be fused with other element-wise operations. we
- skip adding bias but instead return it.
- params_dtype: Data type for the parameters.
- linear_method: (Maybe quantized) linear method.
- output_sizes: list of output sizes packed into one output, like for
- QKV the list would be size 3.
- """
- def __init__(
- self,
- input_size: int,
- output_size: int,
- bias: bool = True,
- gather_output: bool = False,
- skip_bias_add: bool = False,
- params_dtype: Optional[torch.dtype] = None,
- linear_method: Optional[LinearMethodBase] = None,
- output_sizes: Optional[List[int]] = None,
- num_experts: int = 1,
- ):
- super().__init__()
- # Keep input parameters
- self.input_size = input_size
- self.output_size = output_size
- self.gather_output = gather_output
- # Divide the weight matrix along the last dimension.
- tp_size = get_tensor_model_parallel_world_size()
- self.output_size_per_partition = divide(output_size, tp_size)
- self.skip_bias_add = skip_bias_add
- if params_dtype is None:
- params_dtype = torch.get_default_dtype()
- self.params_dtype = params_dtype
- if linear_method is None:
- linear_method = UnquantizedLinearMethod()
- if output_sizes is None:
- output_sizes = [output_size]
- self.linear_method = linear_method
- self.num_experts = num_experts
- self.linear_weights = self.linear_method.create_moe_weights(
- num_experts, self.input_size, [x // tp_size for x in output_sizes],
- self.input_size, self.output_size, self.params_dtype)
- for name, weight in self.linear_weights.items():
- if isinstance(weight, torch.nn.parameter.Parameter):
- self.register_parameter(name, weight)
- set_weight_attrs(weight, {"weight_loader": self.weight_loader})
- if bias:
- self.bias = Parameter(
- torch.empty(self.output_size_per_partition,
- dtype=params_dtype))
- set_weight_attrs(self.bias, {
- "output_dim": 0,
- "weight_loader": self.weight_loader,
- })
- else:
- self.register_parameter("bias", None)
- def weight_loader(self,
- param: Parameter,
- loaded_weight: torch.Tensor,
- expert_id: int = -1):
- tp_rank = get_tensor_model_parallel_rank()
- tp_size = get_tensor_model_parallel_world_size()
- output_dim = getattr(param, "output_dim", None)
- param_data = param.data
- if self.num_experts > 1:
- if expert_id >= 0:
- param_data = param_data[expert_id]
- # Loaded weight is packed at expert dim
- else:
- output_dim = output_dim + 1
- if output_dim is not None:
- if loaded_weight.shape[output_dim] % tp_size != 0:
- raise ValueError(
- "Size is not aligned with the quantized weight shape")
- shard_size = loaded_weight.shape[output_dim] // tp_size
- start_idx = tp_rank * shard_size
- loaded_weight = loaded_weight.narrow(output_dim, start_idx,
- shard_size)
- if isinstance(param, torch.nn.parameter.UninitializedParameter):
- param.materialize(loaded_weight.shape, dtype=loaded_weight.dtype)
- param_data = param.data
- assert param_data.shape == loaded_weight.shape
- param_data.copy_(loaded_weight)
- def forward(self, input_):
- bias = self.bias if not self.skip_bias_add else None
- # Matrix multiply.
- output_parallel = self.linear_method.apply_weights(
- self.linear_weights, input_, bias)
- if self.gather_output:
- # All-gather across the partitions.
- output = tensor_model_parallel_all_gather(output_parallel)
- else:
- output = output_parallel
- output_bias = self.bias if self.skip_bias_add else None
- return output, output_bias
- class MergedColumnParallelLinear(ColumnParallelLinear):
- """Packed linear layers with column parallelism.
- Similar to ColumnParallelLinear, but the weight matrix is concatenated
- along the output dimension. When the weight matrix is loaded, the
- different partitions are sharded separately.
- Args:
- input_size: input dimension of the linear layer.
- output_sizes: list of output dimensions of the linear layer.
- bias: If true, add bias.
- gather_output: If true, call all-gather on output and make the output
- available to all GPUs, otherwise, every GPU will have
- its own output.
- skip_bias_add: This was added to enable performance optimizations where
- bias can be fused with other element-wise operations. we
- skip adding bias but instead return it.
- params_dtype: Data type for the parameters.
- linear_method: (Maybe quantized) linear method.
- """
- def __init__(
- self,
- input_size: int,
- output_sizes: List[int],
- bias: bool = True,
- gather_output: bool = False,
- skip_bias_add: bool = False,
- params_dtype: Optional[torch.dtype] = None,
- linear_method: Optional[LinearMethodBase] = None,
- num_experts: int = 1,
- ):
- self.output_sizes = output_sizes
- tp_size = get_tensor_model_parallel_world_size()
- assert all(output_size % tp_size == 0 for output_size in output_sizes)
- super().__init__(input_size, sum(output_sizes), bias, gather_output,
- skip_bias_add, params_dtype, linear_method,
- self.output_sizes, num_experts)
- def weight_loader(self,
- param: Parameter,
- loaded_weight: torch.Tensor,
- loaded_shard_id: Optional[int] = None,
- expert_id: int = -1):
- param_data = param.data
- output_dim = getattr(param, "output_dim", None)
- is_metadata = getattr(param, "is_metadata", False)
- if self.num_experts > 1:
- if expert_id >= 0:
- param_data = param_data[expert_id]
- # Loaded weight is packed at expert dim
- elif output_dim is not None:
- output_dim = output_dim + 1
- if loaded_shard_id is None:
- # Loaded weight is already packed.
- if output_dim is None:
- assert param_data.shape == loaded_weight.shape
- param_data.copy_(loaded_weight)
- return
- current_shard_offset = 0
- shard_offsets = []
- for i, output_size in enumerate(self.output_sizes):
- shard_offsets.append((i, current_shard_offset, output_size))
- current_shard_offset += output_size
- packed_dim = getattr(param, "packed_dim", None)
- for shard_id, shard_offset, shard_size in shard_offsets:
- # If quantized, we need to adjust the offset and size to account
- # for the packing.
- if packed_dim == output_dim:
- shard_size = shard_size // param.pack_factor
- shard_offset = shard_offset // param.pack_factor
- # If marlin, we need to adjust the offset and size to
- # account for the tiling.
- shard_size, shard_offset = adjust_marlin_shard(
- param, shard_size, shard_offset)
- loaded_weight_shard = loaded_weight.narrow(
- output_dim, shard_offset, shard_size)
- self.weight_loader(param, loaded_weight_shard, shard_id)
- return
- assert loaded_shard_id < len(self.output_sizes)
- tp_rank = get_tensor_model_parallel_rank()
- tp_size = get_tensor_model_parallel_world_size()
- if output_dim is not None:
- shard_offset = sum(self.output_sizes[:loaded_shard_id]) // tp_size
- shard_size = self.output_sizes[loaded_shard_id] // tp_size
- # If quantized, we need to adjust the offset and size to account
- # for the packing.
- packed_dim = getattr(param, "packed_dim", None)
- if packed_dim == output_dim:
- shard_size = shard_size // param.pack_factor
- shard_offset = shard_offset // param.pack_factor
- # If marlin, we need to adjust the offset and size to
- # account for the tiling.
- shard_size, shard_offset = adjust_marlin_shard(
- param, shard_size, shard_offset)
- param_data = param_data.narrow(output_dim, shard_offset,
- shard_size)
- start_idx = tp_rank * shard_size
- loaded_weight = loaded_weight.narrow(output_dim, start_idx,
- shard_size)
- elif is_metadata:
- # metadata indicates fixed size concatenated along dim 0
- shard_size = loaded_weight.shape[0]
- shard_offset = loaded_shard_id * shard_size
- param_data = param_data.narrow(0, shard_offset, shard_size)
- else:
- ignore_warning = getattr(param, "ignore_warning", False)
- if not ignore_warning:
- logger.warning(
- "Loading a weight without `output_dim` attribute in "
- "MergedColumnParallelLinear, assume the weight is "
- "the same for all partitions.")
- assert param_data.shape == loaded_weight.shape
- param_data.copy_(loaded_weight)
- class QKVParallelLinear(ColumnParallelLinear):
- """Linear layers for the attention's QKV transformation.
- Linear layers for the linear transformation of the query, key, and value
- vectors in the attention layer. The weight matrix is concatenated along
- the output dimension. The layer is parallelized along the head dimension.
- When the number of key/value heads is smaller than the number of query
- heads (e.g., multi-query/grouped-query attention), the key/value head may
- be replicated while the query heads are partitioned.
- Args:
- hidden_size: input hidden state size of the transformer.
- head_size: size of each attention head.
- total_num_heads: total number of attention query heads.
- total_num_kv_heads: total number of attention key/value heads. If
- None, assume total_num_kv_heads = total_num_heads.
- bias: If true, add bias.
- skip_bias_add: This was added to enable performance optimizations where
- bias can be fused with other element-wise operations. we
- skip adding bias but instead return it.
- params_dtype: Data type for the parameters.
- linear_method: (Maybe quantized) linear method.
- """
- def __init__(
- self,
- hidden_size: int,
- head_size: int,
- total_num_heads: int,
- total_num_kv_heads: Optional[int] = None,
- bias: bool = True,
- skip_bias_add: bool = False,
- params_dtype: Optional[torch.dtype] = None,
- linear_method: Optional[LinearMethodBase] = None,
- ):
- self.hidden_size = hidden_size
- self.head_size = head_size
- self.total_num_heads = total_num_heads
- if total_num_kv_heads is None:
- total_num_kv_heads = total_num_heads
- self.total_num_kv_heads = total_num_kv_heads
- # Divide the weight matrix along the last dimension.
- tp_size = get_tensor_model_parallel_world_size()
- self.num_heads = divide(self.total_num_heads, tp_size)
- if tp_size >= self.total_num_kv_heads:
- self.num_kv_heads = 1
- self.num_kv_head_replicas = divide(tp_size,
- self.total_num_kv_heads)
- else:
- self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
- self.num_kv_head_replicas = 1
- input_size = self.hidden_size
- output_size = (self.num_heads +
- 2 * self.num_kv_heads) * tp_size * self.head_size
- super().__init__(input_size, output_size, bias, False, skip_bias_add,
- params_dtype, linear_method, [
- self.num_heads * tp_size * self.head_size,
- self.num_kv_heads * tp_size * self.head_size,
- self.num_kv_heads * tp_size * self.head_size
- ])
- def weight_loader(self,
- param: Parameter,
- loaded_weight: torch.Tensor,
- loaded_shard_id: Optional[str] = None):
- param_data = param.data
- output_dim = getattr(param, "output_dim", None)
- is_metadata = getattr(param, "is_metadata", False)
- if loaded_shard_id is None:
- # Loaded weight is already packed.
- if output_dim is None:
- assert param_data.shape == loaded_weight.shape
- param_data.copy_(loaded_weight)
- return
- shard_offsets = [
- # (shard_id, shard_offset, shard_size)
- ("q", 0, self.total_num_heads * self.head_size),
- ("k", self.total_num_heads * self.head_size,
- self.total_num_kv_heads * self.head_size),
- ("v", (self.total_num_heads + self.total_num_kv_heads) *
- self.head_size, self.total_num_kv_heads * self.head_size),
- ]
- packed_dim = getattr(param, "packed_dim", None)
- for shard_id, shard_offset, shard_size in shard_offsets:
- # If quantized, we need to adjust the offset and size to account
- # for the packing.
- if packed_dim == output_dim:
- shard_size = shard_size // param.pack_factor
- shard_offset = shard_offset // param.pack_factor
- # If marlin, we need to adjust the offset and size to
- # account for the tiling.
- shard_size, shard_offset = adjust_marlin_shard(
- param, shard_size, shard_offset)
- loaded_weight_shard = loaded_weight.narrow(
- output_dim, shard_offset, shard_size)
- self.weight_loader(param, loaded_weight_shard, shard_id)
- return
- tp_rank = get_tensor_model_parallel_rank()
- assert loaded_shard_id in ["q", "k", "v"]
- if output_dim is not None:
- if loaded_shard_id == "q":
- shard_offset = 0
- shard_size = self.num_heads * self.head_size
- elif loaded_shard_id == "k":
- shard_offset = self.num_heads * self.head_size
- shard_size = self.num_kv_heads * self.head_size
- elif loaded_shard_id == "v":
- shard_offset = (self.num_heads +
- self.num_kv_heads) * self.head_size
- shard_size = self.num_kv_heads * self.head_size
- # If quantized, we need to adjust the offset and size to account
- # for the packing.
- packed_dim = getattr(param, "packed_dim", None)
- if packed_dim == output_dim:
- shard_size = shard_size // param.pack_factor
- shard_offset = shard_offset // param.pack_factor
- # If marlin, we need to adjust the offset and size to
- # account for the tiling.
- shard_size, shard_offset = adjust_marlin_shard(
- param, shard_size, shard_offset)
- param_data = param_data.narrow(output_dim, shard_offset,
- shard_size)
- if loaded_shard_id == "q":
- shard_id = tp_rank
- else:
- shard_id = tp_rank // self.num_kv_head_replicas
- start_idx = shard_id * shard_size
- loaded_weight = loaded_weight.narrow(output_dim, start_idx,
- shard_size)
- elif is_metadata:
- # metadata indicates fixed size concatenated along dim 0
- shard_size = loaded_weight.shape[0]
- shard_index = ["q", "k", "v"].index(loaded_shard_id)
- param_data = param_data.narrow(0, shard_index * shard_size,
- shard_size)
- else:
- ignore_warning = getattr(param, "ignore_warning", False)
- if not ignore_warning:
- logger.warning(
- "Loading a weight without `output_dim` attribute in "
- "QKVParallelLinear, assume the weight is the same "
- "for all partitions.")
- assert param_data.shape == loaded_weight.shape
- param_data.copy_(loaded_weight)
- class RowParallelLinear(torch.nn.Module):
- """Linear layer with row parallelism.
- The linear layer is defined as Y = XA + b. A is parallelized along
- its first dimension and X along its second dimension as:
- - -
- | A_1 |
- | . |
- A = | . | X = [X_1, ..., X_p]
- | . |
- | A_p |
- - -
- Arguments:
- input_size: first dimension of matrix A.
- output_size: second dimension of matrix A.
- bias: If true, add bias. Note that bias is not parallelized.
- input_is_parallel: If true, we assume that the input is already
- split across the GPUs and we do not split
- again.
- skip_bias_add: This was added to enable performance optimization where
- bias can be fused with other element-wise operations.
- We skip adding bias but instead return it.
- params_dtype: Data type for the parameters.
- linear_method: (Maybe quantized) linear method.
- """
- def __init__(
- self,
- input_size: int,
- output_size: int,
- bias: bool = True,
- input_is_parallel: bool = True,
- skip_bias_add: bool = False,
- params_dtype: Optional[torch.dtype] = None,
- reduce_results: bool = True,
- linear_method: Optional[LinearMethodBase] = None,
- num_experts: int = 1,
- ):
- super().__init__()
- # Keep input parameters
- self.input_size = input_size
- self.output_size = output_size
- self.input_is_parallel = input_is_parallel
- self.reduce_results = reduce_results
- if params_dtype is None:
- params_dtype = torch.get_default_dtype()
- self.params_dtype = params_dtype
- # Divide the weight matrix along the last dimension.
- self.tp_size = get_tensor_model_parallel_world_size()
- self.input_size_per_partition = divide(input_size, self.tp_size)
- self.skip_bias_add = skip_bias_add
- if linear_method is None:
- linear_method = UnquantizedLinearMethod()
- self.linear_method = linear_method
- self.num_experts = num_experts
- self.linear_weights = self.linear_method.create_moe_weights(
- num_experts, self.input_size_per_partition, [self.output_size],
- self.input_size, self.output_size, self.params_dtype)
- for name, weight in self.linear_weights.items():
- if isinstance(weight, torch.nn.parameter.Parameter):
- self.register_parameter(name, weight)
- set_weight_attrs(weight, {"weight_loader": self.weight_loader})
- if not reduce_results and (bias and not skip_bias_add):
- raise ValueError("When not reduce the results, adding bias to the "
- "results can lead to incorrect results")
- if bias:
- self.bias = Parameter(
- torch.empty(self.output_size, dtype=params_dtype))
- set_weight_attrs(self.bias, {
- "output_dim": 0,
- "weight_loader": self.weight_loader,
- })
- else:
- self.register_parameter("bias", None)
- def weight_loader(self,
- param: Parameter,
- loaded_weight: torch.Tensor,
- expert_id: int = -1):
- tp_rank = get_tensor_model_parallel_rank()
- tp_size = get_tensor_model_parallel_world_size()
- input_dim = getattr(param, "input_dim", None)
- param_data = param.data
- if self.num_experts > 1:
- if expert_id >= 0:
- param_data = param_data[expert_id]
- # Loaded weight is packed at expert dim
- elif input_dim is not None:
- input_dim = input_dim + 1
- if input_dim is not None:
- if loaded_weight.shape[input_dim] % tp_size != 0:
- raise ValueError(
- "Size is not aligned with the quantized weight shape")
- shard_size = loaded_weight.shape[input_dim] // tp_size
- start_idx = tp_rank * shard_size
- loaded_weight = loaded_weight.narrow(input_dim, start_idx,
- shard_size)
- if isinstance(param, torch.nn.parameter.UninitializedParameter):
- param.materialize(loaded_weight.shape, dtype=loaded_weight.dtype)
- param_data = param.data
- assert param_data.shape == loaded_weight.shape
- param_data.copy_(loaded_weight)
- def forward(self, input_):
- is_exl2 = hasattr(
- self.linear_method, "quant_config"
- ) and self.linear_method.quant_config.get_name() == "exl2"
- if self.input_is_parallel and is_exl2:
- input_parallel = tensor_model_parallel_all_gather(input_)
- elif self.input_is_parallel or is_exl2:
- input_parallel = input_
- else:
- tp_rank = get_tensor_model_parallel_rank()
- splitted_input = split_tensor_along_last_dim(
- input_, num_partitions=self.tp_size)
- input_parallel = splitted_input[tp_rank].contiguous()
- # Matrix multiply.
- output_parallel = self.linear_method.apply_weights(
- self.linear_weights, input_parallel)
- if self.reduce_results and self.tp_size > 1:
- output_ = tensor_model_parallel_all_reduce(output_parallel)
- else:
- output_ = output_parallel
- if not self.skip_bias_add:
- output = output_ + self.bias if self.bias is not None else output_
- output_bias = None
- else:
- output = output_
- output_bias = self.bias
- return output, output_bias
|