123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 |
- """A layer that compute logits from hidden_stats."""
- import inspect
- from typing import Optional
- import torch
- import torch.nn as nn
- from aphrodite.distributed import (tensor_model_parallel_all_gather,
- tensor_model_parallel_gather)
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- VocabParallelEmbedding)
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.platforms import current_platform
- class LogitsProcessor(nn.Module):
- """Process logits and apply logits processors from sampling metadata.
- This layer does the following:
- 1. Gather logits from model hidden_states.
- 2. Scale logits if needed.
- 3. Apply logits processors (if any).
- """
- def __init__(self,
- vocab_size: int,
- org_vocab_size: Optional[int] = None,
- scale: float = 1.0,
- logits_as_input: bool = False,
- soft_cap: Optional[float] = None) -> None:
- """
- Args:
- scale: A scaling factor to apply to the logits.
- """
- super().__init__()
- self.scale = scale
- self.vocab_size = vocab_size
- # Whether the input is logits (default is hidden states).
- self.logits_as_input = logits_as_input
- # original vocabulary size (without LoRA).
- self.org_vocab_size = org_vocab_size or vocab_size
- # Soft cap the logits. Used in Gemma 2.
- self.soft_cap = soft_cap
- # Whether to use gather or all-gather to gather the logits.
- self.use_gather = not current_platform.is_tpu()
- def forward(
- self,
- lm_head: VocabParallelEmbedding,
- hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- embedding_bias: Optional[torch.Tensor] = None,
- ) -> Optional[torch.Tensor]:
- if self.logits_as_input:
- logits = hidden_states
- else:
- hidden_states = _prune_hidden_states(hidden_states,
- sampling_metadata)
- # Get the logits for the next tokens.
- logits = self._get_logits(hidden_states, lm_head, embedding_bias)
- if logits is not None:
- if self.soft_cap is not None:
- logits = logits / self.soft_cap
- logits = torch.tanh(logits)
- logits = logits * self.soft_cap
- if self.scale != 1.0:
- logits *= self.scale
- # Apply logits processors (if any).
- logits = _apply_logits_processors(logits, sampling_metadata)
- return logits
- def _get_logits(
- self,
- hidden_states: torch.Tensor,
- lm_head: VocabParallelEmbedding,
- embedding_bias: Optional[torch.Tensor],
- ) -> Optional[torch.Tensor]:
- # Get the logits for the next tokens.
- logits = lm_head.linear_method.apply(lm_head,
- hidden_states,
- bias=embedding_bias)
- if self.use_gather:
- # None may be returned for rank > 0
- logits = tensor_model_parallel_gather(logits)
- else:
- # Gather is not supported for some devices such as TPUs.
- # Use all-gather instead.
- # NOTE: Here, the outputs of every device should not be None
- # because XLA requires strict SPMD among all devices. Every device
- # should execute the same operations after gathering the logits.
- logits = tensor_model_parallel_all_gather(logits)
- # Remove paddings in vocab (if any).
- if logits is not None:
- logits = logits[..., :self.org_vocab_size]
- return logits
- def extra_repr(self) -> str:
- s = f"vocab_size={self.vocab_size}"
- s += f", forg_vocab_size={self.org_vocab_size}"
- s += f", scale={self.scale}, logits_as_input={self.logits_as_input}"
- return s
- def _prune_hidden_states(
- hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> torch.Tensor:
- return hidden_states.index_select(0,
- sampling_metadata.selected_token_indices)
- def _apply_logits_processors(
- logits: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> torch.Tensor:
- found_logits_processors = False
- has_negative = False
- logits_processed = 0
- for seq_group in sampling_metadata.seq_groups:
- seq_ids = seq_group.seq_ids
- sampling_params = seq_group.sampling_params
- logits_processors = sampling_params.logits_processors
- guidance_scale = sampling_params.guidance_scale
- if logits_processors:
- found_logits_processors = True
- for seq_id, logits_row_idx in zip(seq_ids,
- seq_group.sample_indices):
- if guidance_scale is not None:
- has_negative = True
- assert 2 * logits_row_idx + 1 < logits.shape[0]
- if guidance_scale != 1.0:
- positive_logits_row = logits[2 * logits_row_idx]
- negative_logitis_row = logits[2 * logits_row_idx + 1]
- condition_logits = torch.nn.functional.log_softmax(
- positive_logits_row, dim=-1)
- unconditional_logits = torch.nn.functional.log_softmax(
- negative_logitis_row, dim=-1)
- logits_row = guidance_scale * (condition_logits -
- unconditional_logits) + \
- unconditional_logits
- logits_row_idx *= 2
- else:
- logits_row = logits[2 * logits_row_idx]
- logits_row_idx *= 2
- else:
- logits_row = logits[logits_row_idx]
- past_tokens_ids = seq_group.seq_data[seq_id].output_token_ids
- prompt_tokens_ids = seq_group.seq_data[seq_id].prompt_token_ids
- for logits_processor in logits_processors:
- parameters = inspect.signature(logits_processor).parameters
- if len(parameters) == 3:
- logits_row = logits_processor(prompt_tokens_ids,
- past_tokens_ids,
- logits_row)
- else:
- logits_row = logits_processor(past_tokens_ids,
- logits_row)
- logits[logits_row_idx] = logits_row
- logits_processed += len(seq_group.sample_indices) + len(
- seq_group.prompt_logprob_indices)
- if found_logits_processors:
- # verifies that no rows in logits were missed unexpectedly
- if has_negative:
- assert logits_processed == logits.shape[0] // 2
- else:
- assert logits_processed == logits.shape[0]
- if has_negative:
- return logits[::2, :]
- else:
- return logits
|