123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 |
- from typing import (TYPE_CHECKING, Generic, Iterable, List, Optional, Tuple,
- Union)
- from typing_extensions import NotRequired, TypedDict, TypeVar
- if TYPE_CHECKING:
- from aphrodite.multimodal import MultiModalDataDict
- class TextPrompt(TypedDict):
- """Schema for a text prompt."""
- prompt: str
- """The input text to be tokenized before passing to the model."""
- multi_modal_data: NotRequired["MultiModalDataDict"]
- """
- Optional multi-modal data to pass to the model,
- if the model supports it.
- """
- class TokensPrompt(TypedDict):
- """Schema for a tokenized prompt."""
- prompt_token_ids: List[int]
- """A list of token IDs to pass to the model."""
- multi_modal_data: NotRequired["MultiModalDataDict"]
- """
- Optional multi-modal data to pass to the model,
- if the model supports it.
- """
- class NegativeTextPrompt(TypedDict):
- """Schema for a text prompt."""
- negative_prompt: str
- """The input text to be tokenized before passing to the model."""
- class NegativeTokensPrompt(TypedDict):
- """Schema for a tokenized prompt."""
- negative_prompt_token_ids: List[int]
- """A list of token IDs to pass to the model."""
- SingletonPromptInputs = Union[str, TextPrompt, TokensPrompt,
- NegativeTextPrompt, NegativeTokensPrompt]
- """
- Set of possible schemas for a single LLM input:
- - A text prompt (:class:`str` or :class:`TextPrompt`)
- - A tokenized prompt (:class:`TokensPrompt`)
- Note that "singleton" is as opposed to a data structure
- which encapsulates multiple prompts, i.e. of the sort
- which may be utilized for encoder/decoder models when
- the user desires to express both the encoder & decoder
- prompts explicitly, i.e. ExplicitEncoderDecoderPrompt
- A prompt of type SingletonPromptInputs may be employed
- as (1) input to a decoder-only model, (2) input to
- the encoder of an encoder/decoder model, in the scenario
- where the decoder-prompt is not specified explicitly, or
- (3) as a member of a larger data structure encapsulating
- more than one prompt, i.e. ExplicitEncoderDecoderPrompt
- """
- _T1_co = TypeVar("_T1_co",
- bound=SingletonPromptInputs,
- default=SingletonPromptInputs,
- covariant=True)
- _T2_co = TypeVar("_T2_co",
- bound=SingletonPromptInputs,
- default=SingletonPromptInputs,
- covariant=True)
- # TODO: Make fields ReadOnly once mypy supports it
- class ExplicitEncoderDecoderPrompt(TypedDict, Generic[_T1_co, _T2_co]):
- """Represents an encoder/decoder model input prompt,
- comprising an explicit encoder prompt and a
- decoder prompt.
- The encoder and decoder prompts, respectively,
- may formatted according to any of the
- SingletonPromptInputs schemas, and are not
- required to have the same schema.
- Only the encoder prompt may have multi-modal data.
- Note that an ExplicitEncoderDecoderPrompt may not
- be used as an input to a decoder-only model,
- and that the `encoder_prompt` and `decoder_prompt`
- fields of this data structure may not themselves
- must be SingletonPromptInputs instances.
- """
- encoder_prompt: _T1_co
- decoder_prompt: Optional[_T2_co]
- PromptInputs = Union[SingletonPromptInputs, ExplicitEncoderDecoderPrompt]
- """
- Set of possible schemas for an LLM input, including
- both decoder-only and encoder/decoder input types:
- - A text prompt (:class:`str` or :class:`TextPrompt`)
- - A tokenized prompt (:class:`TokensPrompt`)
- - A single data structure containing both an encoder and a decoder prompt
- (:class:`ExplicitEncoderDecoderPrompt`)
- """
- class LLMInputs(TypedDict):
- """
- The inputs in :class:`~aphrodite.AphroditeEngine` before they are
- passed to the model executor.
- This specifies the data required for decoder-only models.
- """
- prompt_token_ids: List[int]
- """The token IDs of the prompt."""
- prompt: NotRequired[Optional[str]]
- """
- The original prompt text corresponding to the token IDs, if available.
- """
- multi_modal_data: NotRequired[Optional["MultiModalDataDict"]]
- """
- Optional multi-modal data to pass to the model,
- if the model supports it.
- """
- negative_prompt_token_ids: NotRequired[Optional[List[int]]]
- negative_prompt: NotRequired[Optional[str]]
- """
- Optional negative prompt data to pass to the model.
- """
- class EncoderDecoderLLMInputs(LLMInputs):
- """
- The inputs in :class:`~aphrodite.AphroditeEngine` before they are
- passed to the model executor.
- This specifies the required data for encoder-decoder models.
- """
- encoder_prompt_token_ids: List[int]
- """The token IDs of the encoder prompt."""
- encoder_prompt: NotRequired[Optional[str]]
- """
- The original encoder prompt text corresponding to the token IDs, if
- available.
- """
- encoder_negative_prompt_token_ids: NotRequired[Optional[List[int]]]
- encoder_negative_prompt: NotRequired[Optional[str]]
- """
- Optional negative prompt data to pass to the model.
- """
- _T1 = TypeVar("_T1",
- bound=SingletonPromptInputs,
- default=SingletonPromptInputs)
- _T2 = TypeVar("_T2",
- bound=SingletonPromptInputs,
- default=SingletonPromptInputs)
- def build_explicit_enc_dec_prompt(
- encoder_prompt: _T1,
- decoder_prompt: Optional[_T2],
- ) -> ExplicitEncoderDecoderPrompt[_T1, _T2]:
- return ExplicitEncoderDecoderPrompt(encoder_prompt=encoder_prompt,
- decoder_prompt=decoder_prompt)
- def zip_enc_dec_prompts(
- enc_prompts: Iterable[_T1],
- dec_prompts: Iterable[Optional[_T2]],
- ) -> List[ExplicitEncoderDecoderPrompt[_T1, _T2]]:
- """
- Zip encoder and decoder prompts together into a list of
- :class:`ExplicitEncoderDecoderPrompt` instances.
- """
- return [
- build_explicit_enc_dec_prompt(encoder_prompt, decoder_prompt)
- for (encoder_prompt, decoder_prompt) in zip(enc_prompts, dec_prompts)
- ]
- def to_enc_dec_tuple_list(
- enc_dec_prompts: Iterable[ExplicitEncoderDecoderPrompt[_T1, _T2]],
- ) -> List[Tuple[_T1, Optional[_T2]]]:
- return [(enc_dec_prompt["encoder_prompt"],
- enc_dec_prompt["decoder_prompt"])
- for enc_dec_prompt in enc_dec_prompts]
|