123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- # coding=utf-8
- # Copied from
- # https://huggingface.co/mosaicml/mpt-7b/blob/main/configuration_mpt.py
- """A HuggingFace-style model configuration."""
- import warnings
- from typing import Any, Dict, Optional, Union
- from transformers import PretrainedConfig
- attn_config_defaults: Dict = {
- 'attn_type': 'multihead_attention',
- 'attn_pdrop': 0.0,
- 'attn_impl': 'triton',
- 'qk_ln': False,
- 'clip_qkv': None,
- 'softmax_scale': None,
- 'prefix_lm': False,
- 'attn_uses_sequence_id': False,
- 'alibi': False,
- 'alibi_bias_max': 8
- }
- ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
- init_config_defaults: Dict = {
- 'name': 'kaiming_normal_',
- 'fan_mode': 'fan_in',
- 'init_nonlinearity': 'relu',
- 'init_div_is_residual': True,
- 'emb_init_std': None,
- 'emb_init_uniform_lim': None,
- 'init_std': None,
- 'init_gain': 0.0
- }
- class MPTConfig(PretrainedConfig):
- model_type = 'mpt'
- attribute_map = {
- 'num_attention_heads': 'n_heads',
- 'hidden_size': 'd_model',
- 'num_hidden_layers': 'n_layers',
- }
- # pylint: disable=dangerous-default-value
- def __init__(self,
- d_model: int = 2048,
- n_heads: int = 16,
- n_layers: int = 24,
- expansion_ratio: int = 4,
- max_seq_len: int = 2048,
- vocab_size: int = 50368,
- resid_pdrop: float = 0.0,
- emb_pdrop: float = 0.0,
- learned_pos_emb: bool = True,
- attn_config: Dict = attn_config_defaults,
- ffn_config: Dict = ffn_config_defaults,
- init_device: str = 'cpu',
- logit_scale: Optional[Union[float, str]] = None,
- no_bias: bool = False,
- embedding_fraction: float = 1.0,
- norm_type: str = 'low_precision_layernorm',
- use_cache: bool = False,
- init_config: Dict = init_config_defaults,
- fc_type: str = 'torch',
- verbose: Optional[int] = None,
- **kwargs: Any):
- self.d_model = d_model
- self.n_heads = n_heads
- self.n_layers = n_layers
- self.expansion_ratio = expansion_ratio
- self.max_seq_len = max_seq_len
- self.vocab_size = vocab_size
- self.resid_pdrop = resid_pdrop
- self.emb_pdrop = emb_pdrop
- self.learned_pos_emb = learned_pos_emb
- self.attn_config = attn_config
- self.ffn_config = ffn_config
- self.init_device = init_device
- self.logit_scale = logit_scale
- self.no_bias = no_bias
- self.embedding_fraction = embedding_fraction
- self.norm_type = norm_type
- self.use_cache = use_cache
- self.init_config = init_config
- self.fc_type = fc_type
- if verbose is not None:
- warnings.warn(DeprecationWarning(
- 'verbose argument for MPTConfig is now ignored and '
- 'will be removed. Use python_log_level instead.'),
- stacklevel=2)
- if 'name' in kwargs:
- del kwargs['name']
- if 'loss_fn' in kwargs:
- del kwargs['loss_fn']
- if self.attn_config.get('alibi', False):
- self.learned_pos_emb = False
- warnings.warn(
- f'alibi is turned on, setting `learned_pos_emb` '
- f'to {self.learned_pos_emb}`',
- stacklevel=2)
- super().__init__(**kwargs)
- self._validate_config()
- def _set_config_defaults(
- self, config: Dict[str, Any],
- config_defaults: Dict[str, Any]) -> Dict[str, Any]:
- for (k, v) in config_defaults.items():
- if k not in config:
- config[k] = v
- return config
- def _validate_config(self) -> None:
- self.attn_config = self._set_config_defaults(self.attn_config,
- attn_config_defaults)
- self.ffn_config = self._set_config_defaults(self.ffn_config,
- ffn_config_defaults)
- self.init_config = self._set_config_defaults(self.init_config,
- init_config_defaults)
- if self.d_model % self.n_heads != 0:
- raise ValueError('d_model must be divisible by n_heads')
- if any((
- prob < 0 or prob > 1 for prob in
- [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop]
- )):
- raise ValueError(
- "self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are "
- "probabilities and must be between 0 and 1")
- if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
- raise ValueError(
- f"Unknown attn_impl={self.attn_config['attn_impl']}")
- if self.attn_config['prefix_lm'] and self.attn_config[
- 'attn_impl'] not in ['torch', 'triton']:
- raise NotImplementedError(
- 'prefix_lm only implemented with torch and triton attention.')
- if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in [
- 'torch', 'triton'
- ]:
- raise NotImplementedError(
- 'alibi only implemented with torch and triton attention.')
- if self.attn_config['attn_uses_sequence_id'] and self.attn_config[
- 'attn_impl'] not in ['torch', 'triton']:
- raise NotImplementedError(
- 'attn_uses_sequence_id only implemented with torch '
- 'and triton attention.')
- if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
- raise ValueError(
- 'model.embedding_fraction must be between 0 (exclusive) '
- 'and 1 (inclusive)!')
- if isinstance(self.logit_scale,
- str) and self.logit_scale != 'inv_sqrt_d_model':
- raise ValueError(
- f"self.logit_scale={self.logit_scale!r} is not recognized as "
- "an option; use numeric value or 'inv_sqrt_d_model'.")
- if self.init_config.get('name', None) is None:
- raise ValueError(
- f"self.init_config={self.init_config!r} 'name' needs to be set."
- )
- if not self.learned_pos_emb and (not self.attn_config['alibi']):
- warnings.warn(
- 'Positional information not being provided to the model.',
- stacklevel=2)
- if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
- try:
- # pylint: disable=import-outside-toplevel
- import transformer_engine.pytorch as te
- del te
- except Exception as exc:
- raise ImportError(
- 'TransformerEngine import fail. `fc_type: te` requires '
- 'TransformerEngine be installed. '
- 'The required version of transformer_engine also requires '
- 'FlashAttention v1.0.6 is installed:\n'
- 'pip install flash-attn==1.0.6 --no-build-isolation \n'
- 'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156'
- ) from exc
- if self.ffn_config['ffn_type'] == 'mptmlp':
- self.ffn_config['fc_type'] = self.fc_type
- elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
- self.ffn_config['bias'] = not self.no_bias
|