123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- # coding=utf-8
- # Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- # Copyright 2023 Cerebras Systems.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """JAIS configuration"""
- from transformers.configuration_utils import PretrainedConfig
- from transformers.utils import logging
- logger = logging.get_logger(__name__)
- class JAISConfig(PretrainedConfig):
- """
- This is the configuration class to store the configuration of a
- [`JAISModel`]. It is used to instantiate a JAIS model according to the
- specified arguments, defining the model architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used
- to control the model outputs. Read the documentation from
- [`PretrainedConfig`] for more information.
- Args:
- vocab_size (`int`, *optional*, defaults to 50257):
- Vocabulary size of the JAIS model. Defines the number of different
- tokens that can be represented by the
- `inputs_ids` passed when calling [`JAISModel`].
- n_positions (`int`, *optional*, defaults to 1024):
- The maximum sequence length that this model might ever be used
- with. Typically set this to something large just in case
- (e.g., 512 or 1024 or 2048).
- n_embd (`int`, *optional*, defaults to 768):
- Dimensionality of the embeddings and hidden states.
- n_layer (`int`, *optional*, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- n_head (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the
- Transformer encoder.
- n_inner (`int`, *optional*, defaults to None):
- Dimensionality of the inner feed-forward layers. `None` will set
- it to 4 times n_embd
- activation_function (`str`, *optional*, defaults to `"gelu"`):
- Activation function, to be selected in the list
- `["relu", "silu", "gelu", "tanh", "gelu_new", "swiglu"]`.
- resid_pdrop (`float`, *optional*, defaults to 0.1):
- The dropout probability for all fully connected layers in
- the embeddings, encoder, and pooler.
- embd_pdrop (`float`, *optional*, defaults to 0.1):
- The dropout ratio for the embeddings.
- attn_pdrop (`float`, *optional*, defaults to 0.1):
- The dropout ratio for the attention.
- layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
- The epsilon to use in the layer normalization layers.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for
- initializing all weight matrices.
- scale_attn_weights (`bool`, *optional*, defaults to `True`):
- Scale attention weights by dividing by sqrt(hidden_size)..
- use_cache (`bool`, *optional*, defaults to `True`):
- Whether or not the model should return the last key/values
- attentions (not used by all models).
- scale_attn_by_inverse_layer_idx (`bool`, *optional*,
- defaults to `False`):
- Whether to additionally scale attention weights by
- `1 / layer_idx + 1`.
- reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
- Whether to scale keys (K) prior to computing attention
- (dot-product)
- and upcast attention dot-product/softmax to float() when training
- with mixed precision.
- position_embedding_type (`str`, *optional*, defaults to `"learned"`):
- Positional embedding can be either `"alibi"` or `"learned"`.
- mup_width_scale (`float`, *optional*, defaults to 1.0):
- muP parameter to scale learning rate and initializers. Calculated
- as (`d_model,0 / d_model`), where
- `d_model` is the model's width and `d_model,0` is the proxy
- model's width.
- mup_embeddings_scale (`float`, *optional*, defaults to 1.0):
- muP parameter to scale token and position embeddings.
- mup_output_alpha (`float`, *optional*, defaults to 1.0):
- muP parameter to scale output logits
- (`output_logits_scale = mup_output_alpha * mup_width_scale`).
- mup_scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`):
- Scale attention weights by dividing by hidden_size instead of
- sqrt(hidden_size). Need to set scale_attn_weights to `True` as
- well.
- alibi_scaling (`Dict`, *optional*):
- Dictionary containing the scaling configuration for ALiBi
- embeddings. Currently only supports linear
- scaling strategy. Can specify either the scaling `factor` (must be
- a float greater than 1) for fixed scaling
- or `train_seq_len` for dynamic scaling on input samples with
- sequence length > `train_seq_len`. The expected
- formats are `{"type": strategy name, "factor": scaling factor}` or
- `{"type": strategy name,
- "train_seq_len": training sequence length}`.
- architectures (`List`, *optional*, defaults to ['JAISLMHeadModel']):
- architecture names for Jais.
- Example:
- ```python
- >>> from transformers import JAISConfig, JAISModel
- >>> # Initializing a JAIS configuration
- >>> configuration = JAISConfig()
- >>> # Initializing a model (with random weights) from the configuration
- >>> model = JAISModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "jais"
- keys_to_ignore_at_inference = ["past_key_values"]
- attribute_map = {
- "hidden_size": "n_embd",
- "max_position_embeddings": "n_positions",
- "num_attention_heads": "n_head",
- "num_hidden_layers": "n_layer",
- }
- def __init__(
- self,
- vocab_size=50257,
- n_positions=1024,
- n_embd=768,
- n_layer=12,
- n_head=12,
- n_inner=None,
- activation_function="gelu_new",
- resid_pdrop=0.1,
- embd_pdrop=0.1,
- attn_pdrop=0.1,
- layer_norm_epsilon=1e-5,
- initializer_range=0.02,
- scale_attn_weights=True,
- use_cache=True,
- bos_token_id=50256,
- eos_token_id=50256,
- scale_attn_by_inverse_layer_idx=False,
- reorder_and_upcast_attn=False,
- position_embedding_type="learned",
- mup_width_scale=1.0,
- mup_embeddings_scale=1.0,
- mup_output_alpha=1.0,
- mup_scale_qk_dot_by_d=False,
- alibi_scaling=None,
- architectures=None,
- **kwargs,
- ):
- self.vocab_size = vocab_size
- self.n_positions = n_positions
- self.n_embd = n_embd
- self.n_layer = n_layer
- self.n_head = n_head
- self.n_inner = n_inner
- self.activation_function = activation_function
- self.resid_pdrop = resid_pdrop
- self.embd_pdrop = embd_pdrop
- self.attn_pdrop = attn_pdrop
- self.layer_norm_epsilon = layer_norm_epsilon
- self.initializer_range = initializer_range
- self.scale_attn_weights = scale_attn_weights
- self.use_cache = use_cache
- self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
- self.reorder_and_upcast_attn = reorder_and_upcast_attn
- self.bos_token_id = bos_token_id
- self.eos_token_id = eos_token_id
- self.position_embedding_type = position_embedding_type
- self.mup_width_scale = mup_width_scale
- self.mup_embeddings_scale = mup_embeddings_scale
- self.mup_output_alpha = mup_output_alpha
- self.mup_scale_qk_dot_by_d = mup_scale_qk_dot_by_d
- self.alibi_scaling = alibi_scaling
- self._alibi_scaling_validation()
- if architectures is None:
- architectures = ["JAISLMHeadModel"]
- super().__init__(
- bos_token_id=bos_token_id,
- eos_token_id=eos_token_id,
- architectures=architectures,
- **kwargs,
- )
- def _alibi_scaling_validation(self):
- """
- Validate the `alibi_scaling` configuration.
- """
- if self.alibi_scaling is None:
- return
- if (not isinstance(self.alibi_scaling, dict)
- or len(self.alibi_scaling) != 2):
- raise ValueError(
- "`alibi_scaling` must be a dictionary with two fields,"
- "`type` and `factor` or `type` and `train_seq_len`, "
- f"got {self.alibi_scaling}")
- alibi_scaling_type = self.alibi_scaling.get("type", None)
- alibi_scaling_factor = self.alibi_scaling.get("factor", None)
- alibi_dynamic_scaling = self.alibi_scaling.get("train_seq_len", None)
- if alibi_scaling_type is None or alibi_scaling_type != "linear":
- raise ValueError(f"`alibi_scaling`'s type field must be 'linear',"
- f"got {alibi_scaling_type}")
- if (alibi_scaling_factor is not None
- and not isinstance(alibi_scaling_factor, float)
- or (alibi_scaling_factor is not None
- and alibi_scaling_factor <= 1.0)):
- raise ValueError(
- f"`alibi_scaling`'s factor field must be a float > 1.0,"
- f"got {alibi_scaling_factor}")
- if (alibi_dynamic_scaling is not None
- and not isinstance(alibi_dynamic_scaling, int)
- or (alibi_dynamic_scaling is not None
- and alibi_dynamic_scaling <= 1)):
- raise ValueError(
- f"`alibi_scaling`'s `train_seq_len` field must be an"
- f"integer > 1, got {alibi_dynamic_scaling}")
|