123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271 |
- # yapf: disable
- # Adapted from
- # https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/8f6e343d545c503b91429582231d1d354dac2740/tokenization_baichuan.py
- # Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
- import os
- from shutil import copyfile
- from typing import Any, Dict, List, Optional, Tuple
- import sentencepiece as spm
- from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
- from transformers.utils import logging
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
- PRETRAINED_VOCAB_FILES_MAP = {
- "vocab_file": {},
- "tokenizer_file": {},
- }
- PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
- class BaichuanTokenizer(PreTrainedTokenizer):
- """
- Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
- Args:
- vocab_file (`str`):
- Path to the vocabulary file.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
- max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
- model_input_names = ["input_ids", "attention_mask"]
- def __init__(
- self,
- vocab_file,
- unk_token="<unk>",
- bos_token="<s>",
- eos_token="</s>",
- pad_token=None,
- sp_model_kwargs: Optional[Dict[str, Any]] = None,
- add_bos_token=True,
- add_eos_token=False,
- clean_up_tokenization_spaces=False,
- **kwargs,
- ):
- if sp_model_kwargs is None:
- self.sp_model_kwargs = {}
- else:
- self.sp_model_kwargs = sp_model_kwargs
- bos_token = (
- AddedToken(bos_token, lstrip=False, rstrip=False)
- if isinstance(bos_token, str)
- else bos_token
- )
- eos_token = (
- AddedToken(eos_token, lstrip=False, rstrip=False)
- if isinstance(eos_token, str)
- else eos_token
- )
- unk_token = (
- AddedToken(unk_token, lstrip=False, rstrip=False)
- if isinstance(unk_token, str)
- else unk_token
- )
- pad_token = (
- AddedToken(pad_token, lstrip=False, rstrip=False)
- if isinstance(pad_token, str)
- else pad_token
- )
- self.vocab_file = vocab_file
- self.add_bos_token = add_bos_token
- self.add_eos_token = add_eos_token
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
- self.sp_model.Load(vocab_file)
- super().__init__(
- bos_token=bos_token,
- eos_token=eos_token,
- unk_token=unk_token,
- pad_token=pad_token,
- add_bos_token=add_bos_token,
- add_eos_token=add_eos_token,
- sp_model_kwargs=self.sp_model_kwargs,
- clean_up_tokenization_spaces=clean_up_tokenization_spaces,
- **kwargs,
- )
- def __getstate__(self):
- state = self.__dict__.copy()
- state["sp_model"] = None
- return state
- def __setstate__(self, d):
- self.__dict__ = d
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
- self.sp_model.Load(self.vocab_file)
- @property
- def vocab_size(self):
- """Returns vocab size"""
- return self.sp_model.get_piece_size()
- def get_vocab(self):
- """Returns vocab as a dict"""
- vocab = {self.convert_ids_to_tokens(i): i for i in range(
- self.vocab_size)}
- vocab.update(self.added_tokens_encoder)
- return vocab
- def _tokenize(self, text):
- """Returns a tokenized string."""
- return self.sp_model.encode(text, out_type=str)
- def _convert_token_to_id(self, token):
- """Converts a token (str) in an id using the vocab."""
- return self.sp_model.piece_to_id(token)
- def _convert_id_to_token(self, index):
- """Converts an index (integer) in a token (str) using the vocab."""
- token = self.sp_model.IdToPiece(index)
- return token
- def convert_tokens_to_string(self, tokens):
- """Converts a sequence of tokens (string) in a single string."""
- current_sub_tokens = []
- out_string = ""
- prev_is_special = False
- for i, token in enumerate(tokens):
- # make sure that special tokens are not decoded using
- # sentencepiece model
- if token in self.all_special_tokens:
- if not prev_is_special and i != 0:
- out_string += " "
- out_string += self.sp_model.decode(current_sub_tokens) + token
- prev_is_special = True
- current_sub_tokens = []
- else:
- current_sub_tokens.append(token)
- prev_is_special = False
- out_string += self.sp_model.decode(current_sub_tokens)
- return out_string
- def save_vocabulary(
- self, save_directory, filename_prefix: Optional[str] = None
- ) -> Tuple[str]:
- """
- Save the vocabulary and special tokens file to a directory.
- Args:
- save_directory (`str`):
- The directory in which to save the vocabulary.
- Returns:
- `Tuple(str)`: Paths to the files saved.
- """
- if not os.path.isdir(save_directory):
- logger.error(f"Vocabulary path ({save_directory}) should be"
- " a directory")
- return
- out_vocab_file = os.path.join(
- save_directory,
- (filename_prefix + "-" if filename_prefix else "")
- + VOCAB_FILES_NAMES["vocab_file"],
- )
- if os.path.abspath(self.vocab_file) != os.path.abspath(
- out_vocab_file
- ) and os.path.isfile(self.vocab_file):
- copyfile(self.vocab_file, out_vocab_file)
- elif not os.path.isfile(self.vocab_file):
- with open(out_vocab_file, "wb") as fi:
- content_spiece_model = self.sp_model.serialized_model_proto()
- fi.write(content_spiece_model)
- return (out_vocab_file,)
- def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
- bos_token_id = [self.bos_token_id] if self.add_bos_token else []
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
- output = bos_token_id + token_ids_0 + eos_token_id
- if token_ids_1 is not None:
- output = output + bos_token_id + token_ids_1 + eos_token_id
- return output
- def get_special_tokens_mask(
- self,
- token_ids_0: List[int],
- token_ids_1: Optional[List[int]] = None,
- already_has_special_tokens: bool = False,
- ) -> List[int]:
- """
- Retrieve sequence ids from a token list that has no special tokens
- added. This method is called when adding special tokens using the
- tokenizer `prepare_for_model` method.
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- already_has_special_tokens(`bool`, *optional*, defaults to `False`):
- Whether or not the token list is already formatted with special
- tokens for the model.
- Returns:
- `List[int]`: A list of integers in the range [0, 1]: 1 for a
- special token, 0 for a sequence token.
- """
- if already_has_special_tokens:
- return super().get_special_tokens_mask(
- token_ids_0=token_ids_0,
- token_ids_1=token_ids_1,
- already_has_special_tokens=True,
- )
- bos_token_id = [1] if self.add_bos_token else []
- eos_token_id = [1] if self.add_eos_token else []
- if token_ids_1 is None:
- return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
- return (
- bos_token_id
- + ([0] * len(token_ids_0))
- + eos_token_id
- + bos_token_id
- + ([0] * len(token_ids_1))
- + eos_token_id
- )
- def create_token_type_ids_from_sequences(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Creates a mask from the two sequences passed to be used in a
- sequence-pair classification task. An ALBERT
- sequence pair mask has the following format:
- ```
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
- | first sequence | second sequence |
- ```
- if token_ids_1 is None, only returns the first portion of the mask (0s).
- Args:
- token_ids_0 (`List[int]`):
- List of ids.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [token type IDs](../glossary#token-type-ids)
- according to the given sequence(s).
- """
- bos_token_id = [self.bos_token_id] if self.add_bos_token else []
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
- output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
- if token_ids_1 is not None:
- output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
- return output
|