xpu_model_runner.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525
  1. import dataclasses
  2. import weakref
  3. from dataclasses import dataclass
  4. from typing import (TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type,
  5. TypeVar)
  6. import torch
  7. import torch.nn as nn
  8. from loguru import logger
  9. from aphrodite.attention import get_attn_backend
  10. from aphrodite.common.config import (CacheConfig, DeviceConfig, LoadConfig,
  11. LoRAConfig, ModelConfig, ParallelConfig,
  12. PromptAdapterConfig, SchedulerConfig)
  13. from aphrodite.common.sampling_params import SamplingParams
  14. from aphrodite.common.sequence import (IntermediateTensors, SamplerOutput,
  15. SequenceGroupMetadata)
  16. from aphrodite.common.utils import CudaMemoryProfiler, make_tensor_with_pad
  17. from aphrodite.inputs import INPUT_REGISTRY, InputRegistry
  18. from aphrodite.modeling.model_loader import get_model
  19. from aphrodite.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs,
  20. MultiModalInputs, MultiModalRegistry)
  21. from aphrodite.task_handler.model_runner import (AttentionMetadata,
  22. SamplingMetadata)
  23. from aphrodite.task_handler.model_runner_base import (
  24. ModelRunnerBase, ModelRunnerInputBase, ModelRunnerInputBuilderBase,
  25. _add_attn_metadata_broadcastable_dict,
  26. _add_sampling_metadata_broadcastable_dict,
  27. _init_attn_metadata_from_tensor_dict,
  28. _init_sampling_metadata_from_tensor_dict)
  29. if TYPE_CHECKING:
  30. from aphrodite.attention.backends.abstract import AttentionBackend
  31. _PAD_SLOT_ID = -1
  32. _BATCH_SIZE_ALIGNMENT = 8
  33. _BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [
  34. _BATCH_SIZE_ALIGNMENT * i for i in range(1, 33)
  35. ]
  36. TModelInputForXPU = TypeVar('TModelInputForXPU', bound="ModelInputForXPU")
  37. @dataclass(frozen=True)
  38. class ModelInputForXPU(ModelRunnerInputBase):
  39. """
  40. Used by the NeuronModelRunner.
  41. """
  42. input_tokens: Optional[torch.Tensor] = None
  43. input_positions: Optional[torch.Tensor] = None
  44. attn_metadata: Optional["AttentionMetadata"] = None
  45. multi_modal_kwargs: Optional[BatchedTensorInputs] = None
  46. virtual_engine: Optional[int] = None
  47. seq_lens: Optional[List[int]] = None
  48. query_lens: Optional[List[int]] = None
  49. def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
  50. tensor_dict = {
  51. "input_tokens": self.input_tokens,
  52. "input_positions": self.input_positions,
  53. }
  54. _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
  55. return tensor_dict
  56. @classmethod
  57. def from_broadcasted_tensor_dict(
  58. cls: Type[TModelInputForXPU],
  59. tensor_dict: Dict[str, Any],
  60. attn_backend: Optional["AttentionBackend"] = None,
  61. ) -> TModelInputForXPU:
  62. if attn_backend is not None:
  63. tensor_dict = _init_attn_metadata_from_tensor_dict(
  64. attn_backend, tensor_dict)
  65. return cls(**tensor_dict)
  66. @dataclass(frozen=True)
  67. class ModelInputForXPUWithSamplingMetadata(ModelInputForXPU):
  68. """
  69. Used by the ModelRunner.
  70. """
  71. sampling_metadata: Optional["SamplingMetadata"] = None
  72. def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
  73. tensor_dict = {
  74. "input_tokens": self.input_tokens,
  75. "input_positions": self.input_positions,
  76. }
  77. _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
  78. _add_sampling_metadata_broadcastable_dict(tensor_dict,
  79. self.sampling_metadata)
  80. return tensor_dict
  81. @classmethod
  82. def from_broadcasted_tensor_dict(
  83. cls,
  84. tensor_dict: Dict[str, Any],
  85. attn_backend: Optional["AttentionBackend"] = None,
  86. ) -> "ModelInputForXPUWithSamplingMetadata":
  87. tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
  88. if attn_backend is not None:
  89. tensor_dict = _init_attn_metadata_from_tensor_dict(
  90. attn_backend, tensor_dict)
  91. return cls(**tensor_dict)
  92. class ModelInputForXPUBuilder(ModelRunnerInputBuilderBase[ModelInputForXPU]):
  93. def __init__(self,
  94. runner: "XPUModelRunner",
  95. finished_requests_ids: Optional[List[str]] = None) -> None:
  96. super().__init__()
  97. self.seq_group_metadata_list: List[SequenceGroupMetadata] = []
  98. self.runner = runner
  99. self.model_input_cls = self.runner._model_input_cls
  100. self.attn_backend = self.runner.attn_backend
  101. self.sliding_window = self.runner.sliding_window
  102. self.block_size = self.runner.block_size
  103. self.device = self.runner.device
  104. def add_seq_group(self, seq_group_metadata: SequenceGroupMetadata):
  105. self.seq_group_metadata_list.append(seq_group_metadata)
  106. def build(self) -> ModelInputForXPU:
  107. is_prompt = self.seq_group_metadata_list[0].is_prompt
  108. # Prepare input tensors.
  109. if is_prompt:
  110. (input_tokens, input_positions, attn_metadata, seq_lens,
  111. multi_modal_kwargs) = self._prepare_prompt(
  112. self.seq_group_metadata_list)
  113. else:
  114. (input_tokens, input_positions,
  115. attn_metadata) = self._prepare_decode(
  116. self.seq_group_metadata_list)
  117. seq_lens = []
  118. multi_modal_kwargs = None
  119. return self.model_input_cls(
  120. input_tokens=input_tokens,
  121. input_positions=input_positions,
  122. attn_metadata=attn_metadata,
  123. multi_modal_kwargs=multi_modal_kwargs,
  124. seq_lens=seq_lens,
  125. query_lens=seq_lens,
  126. )
  127. def _prepare_prompt(
  128. self,
  129. seq_group_metadata_list: List[SequenceGroupMetadata],
  130. ) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, List[int],
  131. BatchedTensorInputs]:
  132. assert len(seq_group_metadata_list) > 0
  133. input_tokens: List[int] = []
  134. input_positions: List[int] = []
  135. slot_mapping: List[int] = []
  136. seq_lens: List[int] = []
  137. multi_modal_inputs_list: List[MultiModalInputs] = []
  138. for seq_group_metadata in seq_group_metadata_list:
  139. assert seq_group_metadata.is_prompt
  140. seq_ids = list(seq_group_metadata.seq_data.keys())
  141. assert len(seq_ids) == 1
  142. seq_id = seq_ids[0]
  143. seq_data = seq_group_metadata.seq_data[seq_id]
  144. prompt_tokens = seq_data.get_token_ids()
  145. computed_len = seq_data.get_num_computed_tokens()
  146. seq_len = len(prompt_tokens)
  147. seq_lens.append(seq_len) # Prompt token num
  148. input_tokens.extend(prompt_tokens) # Token ids
  149. # Token position ids
  150. # NOTE(woosuk): Here we assume that the first token in the prompt
  151. # is always the first token in the sequence.
  152. input_positions.extend(list(range(computed_len, seq_len)))
  153. if seq_group_metadata.block_tables is None:
  154. # During memory profiling, the block tables are not initialized
  155. # yet. In this case, we just use a dummy slot mapping.
  156. slot_mapping.extend([_PAD_SLOT_ID] * seq_len)
  157. continue
  158. # Compute the slot mapping.
  159. block_table = seq_group_metadata.block_tables[seq_id]
  160. # Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
  161. # where start_idx is max(0, seq_len - sliding_window).
  162. # For example, if the prompt len is 10, sliding window is 8, and
  163. # block size is 4, the first two tokens are masked and the slot
  164. # mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
  165. start_idx = 0
  166. if self.sliding_window is not None:
  167. start_idx = max(0, seq_len - self.sliding_window)
  168. for i in range(computed_len, seq_len):
  169. if i < start_idx:
  170. slot_mapping.append(_PAD_SLOT_ID)
  171. continue
  172. block_number = block_table[i //
  173. self.block_size] # type: ignore
  174. block_offset = i % self.block_size # type: ignore
  175. slot = block_number * self.block_size + block_offset
  176. slot_mapping.append(slot)
  177. num_prompt_tokens = len(input_tokens)
  178. input_tokens = torch.tensor(input_tokens,
  179. dtype=torch.long,
  180. device=self.device) # type: ignore
  181. input_positions = torch.tensor(input_positions,
  182. dtype=torch.long,
  183. device=self.device) # type: ignore
  184. slot_mapping = torch.tensor(slot_mapping,
  185. dtype=torch.long,
  186. device=self.device) # type: ignore
  187. max_seqlen = max(seq_lens)
  188. tmp = [0]
  189. tmp.extend(seq_lens)
  190. seqlen = torch.tensor(tmp)
  191. seqlen_q = torch.cumsum(seqlen, dim=0).to(device=self.device)
  192. attn_metadata = self.attn_backend.make_metadata(
  193. is_prompt=True,
  194. slot_mapping=slot_mapping,
  195. seq_lens=seq_lens,
  196. seqlen_q=seqlen_q,
  197. max_seqlen=max_seqlen,
  198. seq_lens_tensor=torch.tensor([]),
  199. max_decode_seq_len=0,
  200. num_prefills=len(seq_lens),
  201. num_prefill_tokens=num_prompt_tokens,
  202. num_decode_tokens=0,
  203. block_tables=torch.tensor([], device=self.device, dtype=torch.int),
  204. )
  205. multi_modal_kwargs = MultiModalInputs.batch(multi_modal_inputs_list)
  206. return (input_tokens, input_positions, attn_metadata, seq_lens,
  207. multi_modal_kwargs)
  208. def _prepare_decode(
  209. self,
  210. seq_group_metadata_list: List[SequenceGroupMetadata],
  211. ) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata]:
  212. assert len(seq_group_metadata_list) > 0
  213. input_tokens: List[int] = []
  214. input_positions: List[int] = []
  215. slot_mapping: List[int] = []
  216. seq_lens: List[int] = []
  217. block_tables: List[List[int]] = []
  218. for seq_group_metadata in seq_group_metadata_list:
  219. assert not seq_group_metadata.is_prompt
  220. assert seq_group_metadata.token_chunk_size == 1
  221. seq_ids = list(seq_group_metadata.seq_data.keys())
  222. for seq_id in seq_ids:
  223. seq_data = seq_group_metadata.seq_data[seq_id]
  224. generation_token = seq_data.get_last_token_id()
  225. input_tokens.append(generation_token)
  226. seq_len = seq_data.get_len()
  227. position = seq_len - 1
  228. input_positions.append(position)
  229. seq_len = seq_len if self.sliding_window is None else min(
  230. seq_len, self.sliding_window)
  231. seq_lens.append(seq_len)
  232. block_table = seq_group_metadata.block_tables[seq_id]
  233. block_number = block_table[position // self.block_size]
  234. block_offset = position % self.block_size
  235. slot = block_number * self.block_size + block_offset
  236. slot_mapping.append(slot)
  237. if self.sliding_window is not None:
  238. sliding_window_blocks = (self.sliding_window //
  239. self.block_size)
  240. block_table = block_table[-sliding_window_blocks:]
  241. block_tables.append(block_table)
  242. max_decode_seq_len = max(seq_lens)
  243. input_tokens = torch.tensor(input_tokens,
  244. dtype=torch.long,
  245. device=self.device)
  246. input_positions = torch.tensor(input_positions,
  247. dtype=torch.long,
  248. device=self.device)
  249. slot_mapping = torch.tensor(slot_mapping,
  250. dtype=torch.long,
  251. device=self.device)
  252. seq_lens_tensor = torch.tensor(seq_lens,
  253. dtype=torch.int,
  254. device=self.device)
  255. block_tables = make_tensor_with_pad(
  256. block_tables,
  257. pad=0,
  258. dtype=torch.int,
  259. device=self.device,
  260. )
  261. attn_metadata = self.attn_backend.make_metadata(
  262. is_prompt=False,
  263. slot_mapping=slot_mapping,
  264. seq_lens=seq_lens,
  265. seqlen_q=torch.tensor([]),
  266. max_seqlen=0,
  267. seq_lens_tensor=seq_lens_tensor,
  268. max_decode_seq_len=max_decode_seq_len,
  269. num_prefill_tokens=0,
  270. num_decode_tokens=len(input_tokens),
  271. num_prefills=0,
  272. block_tables=block_tables,
  273. )
  274. return (
  275. input_tokens,
  276. input_positions,
  277. attn_metadata,
  278. )
  279. class XPUModelRunner(ModelRunnerBase[ModelInputForXPUWithSamplingMetadata]):
  280. _model_input_cls: Type[ModelInputForXPUWithSamplingMetadata] = (
  281. ModelInputForXPUWithSamplingMetadata)
  282. _builder_cls: Type[ModelInputForXPUBuilder] = ModelInputForXPUBuilder
  283. def __init__(
  284. self,
  285. model_config: ModelConfig,
  286. parallel_config: ParallelConfig,
  287. scheduler_config: SchedulerConfig,
  288. device_config: DeviceConfig,
  289. cache_config: CacheConfig,
  290. load_config: LoadConfig,
  291. lora_config: Optional[LoRAConfig],
  292. kv_cache_dtype: Optional[str] = "auto",
  293. is_driver_worker: bool = False,
  294. prompt_adapter_config: Optional[PromptAdapterConfig] = None,
  295. return_hidden_states: bool = False,
  296. input_registry: InputRegistry = INPUT_REGISTRY,
  297. mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
  298. ):
  299. self.model_config = model_config
  300. self.parallel_config = parallel_config
  301. self.scheduler_config = scheduler_config
  302. self.device_config = device_config
  303. self.cache_config = cache_config
  304. self.lora_config = lora_config
  305. self.load_config = load_config
  306. self.is_driver_worker = is_driver_worker
  307. self.prompt_adapter_config = prompt_adapter_config
  308. self.return_hidden_states = return_hidden_states
  309. self.device = self.device_config.device
  310. self.kv_cache_dtype = kv_cache_dtype
  311. self.sliding_window = model_config.get_sliding_window()
  312. self.block_size = cache_config.block_size
  313. self.max_context_len_to_capture = (
  314. self.model_config.max_context_len_to_capture
  315. if self.model_config is not None else 0)
  316. self.attn_backend = get_attn_backend(
  317. self.model_config.get_head_size(),
  318. self.model_config.get_sliding_window(),
  319. self.model_config.dtype,
  320. self.kv_cache_dtype,
  321. self.block_size,
  322. model_config.is_attention_free(),
  323. )
  324. # Multi-modal data support
  325. self.input_registry = input_registry
  326. self.mm_registry = mm_registry
  327. self.multi_modal_input_mapper = mm_registry \
  328. .create_input_mapper(model_config)
  329. self.mm_registry.init_mm_limits_per_prompt(self.model_config)
  330. # Lazy initialization.
  331. self.model: nn.Module # Set after init_Model
  332. def load_model(self) -> None:
  333. with CudaMemoryProfiler() as m:
  334. self.model = get_model(
  335. model_config=self.model_config,
  336. device_config=self.device_config,
  337. load_config=self.load_config,
  338. lora_config=self.lora_config,
  339. parallel_config=self.parallel_config,
  340. scheduler_config=self.scheduler_config,
  341. cache_config=self.cache_config,
  342. )
  343. self.model_memory_usage = m.consumed_memory
  344. logger.info("Loading model weights took "
  345. f"{self.model_memory_usage / float(2**30):.4f} GB")
  346. @property
  347. def vocab_size(self) -> int:
  348. return self.model_config.get_vocab_size()
  349. @torch.inference_mode()
  350. def profile_run(self) -> None:
  351. # Enable top-k sampling to reflect the accurate memory usage.
  352. sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
  353. max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
  354. max_num_seqs = self.scheduler_config.max_num_seqs
  355. # Profile memory usage with max_num_sequences sequences and the total
  356. # number of tokens equal to max_num_batched_tokens.
  357. seqs: List[SequenceGroupMetadata] = []
  358. # Additional GPU memory may be needed for multi-modal encoding, which
  359. # needs to be accounted for when calculating the GPU blocks for
  360. # Aphrodite blocker manager.
  361. # To exercise the worst scenario for GPU memory consumption,
  362. # the number of seqs (batch_size) is chosen to maximize the number
  363. # of images processed.
  364. max_mm_tokens = self.mm_registry.get_max_multimodal_tokens(
  365. self.model_config)
  366. if max_mm_tokens > 0:
  367. max_num_seqs_orig = max_num_seqs
  368. max_num_seqs = min(max_num_seqs,
  369. max_num_batched_tokens // max_mm_tokens)
  370. if max_num_seqs < 1:
  371. expr = (f"min({max_num_seqs_orig}, "
  372. f"{max_num_batched_tokens} // {max_mm_tokens})")
  373. logger.warning(
  374. f"Computed max_num_seqs ({expr}) to be less than 1. "
  375. "Setting it to the minimum value of 1.")
  376. max_num_seqs = 1
  377. for group_id in range(max_num_seqs):
  378. seq_len = (max_num_batched_tokens // max_num_seqs +
  379. (group_id < max_num_batched_tokens % max_num_seqs))
  380. seq_data, dummy_multi_modal_data = self.input_registry \
  381. .dummy_data_for_profiling(self.model_config,
  382. seq_len,
  383. self.mm_registry)
  384. seq = SequenceGroupMetadata(
  385. request_id=str(group_id),
  386. is_prompt=True,
  387. seq_data={group_id: seq_data},
  388. sampling_params=sampling_params,
  389. block_tables=None,
  390. lora_request=None,
  391. multi_modal_data=dummy_multi_modal_data,
  392. )
  393. seqs.append(seq)
  394. # Run the model with the dummy inputs.
  395. num_layers = self.model_config.get_num_layers(self.parallel_config)
  396. kv_caches = [None] * num_layers
  397. finished_requests_ids = [seq.request_id for seq in seqs]
  398. model_input = self.prepare_model_input(
  399. seqs, finished_requests_ids=finished_requests_ids)
  400. self.execute_model(model_input, kv_caches)
  401. torch.xpu.synchronize()
  402. return
  403. def make_model_input_from_broadcasted_tensor_dict(
  404. self,
  405. tensor_dict: Dict[str,
  406. Any]) -> ModelInputForXPUWithSamplingMetadata:
  407. return (
  408. ModelInputForXPUWithSamplingMetadata.from_broadcasted_tensor_dict(
  409. tensor_dict,
  410. attn_backend=self.attn_backend,
  411. ))
  412. def _prepare_model_input_tensors(
  413. self,
  414. seq_group_metadata_list: List[SequenceGroupMetadata],
  415. finished_requests_ids: Optional[List[str]] = None
  416. ) -> ModelInputForXPUWithSamplingMetadata:
  417. """Helper method to prepare the model input based on a given sequence
  418. group. Prepares metadata needed for the base model forward pass but not
  419. metadata for possible additional steps, e.g., sampling.
  420. """
  421. builder = self._builder_cls(weakref.proxy(self), finished_requests_ids)
  422. for seq_group_metadata in seq_group_metadata_list:
  423. builder.add_seq_group(seq_group_metadata)
  424. return builder.build() # type: ignore
  425. def prepare_model_input(
  426. self,
  427. seq_group_metadata_list: List[SequenceGroupMetadata],
  428. virtual_engine: int = 0,
  429. finished_requests_ids: Optional[List[str]] = None
  430. ) -> ModelInputForXPUWithSamplingMetadata:
  431. """Prepare the model input based on a given sequence group, including
  432. metadata for the sampling step.
  433. """
  434. model_input = self._prepare_model_input_tensors(
  435. seq_group_metadata_list, finished_requests_ids)
  436. # Sampling metadata is only required for the final pp group
  437. generators = self.get_generators(finished_requests_ids)
  438. sampling_metadata = SamplingMetadata.prepare(seq_group_metadata_list,
  439. model_input.seq_lens,
  440. model_input.query_lens,
  441. self.device,
  442. pin_memory=False,
  443. generators=generators)
  444. return dataclasses.replace(model_input,
  445. sampling_metadata=sampling_metadata,
  446. virtual_engine=virtual_engine)
  447. @torch.inference_mode()
  448. def execute_model(
  449. self,
  450. model_input: ModelInputForXPUWithSamplingMetadata,
  451. kv_caches: List[torch.Tensor],
  452. intermediate_tensors: Optional[IntermediateTensors] = None,
  453. num_steps: int = 1,
  454. ) -> Optional[List[SamplerOutput]]:
  455. if num_steps > 1:
  456. raise ValueError(
  457. "XPUModelRunner does not support multi-step execution.")
  458. model_executable = self.model
  459. hidden_states = model_executable(
  460. input_ids=model_input.input_tokens,
  461. positions=model_input.input_positions,
  462. kv_caches=kv_caches,
  463. attn_metadata=model_input.attn_metadata,
  464. intermediate_tensors=intermediate_tensors,
  465. **MultiModalInputs.as_kwargs(model_input.multi_modal_kwargs or {},
  466. device=self.device))
  467. # Compute the logits.
  468. logits = self.model.compute_logits(hidden_states,
  469. model_input.sampling_metadata)
  470. # Only perform sampling in the driver worker.
  471. if not self.is_driver_worker:
  472. return []
  473. # Sample the next token.
  474. output: SamplerOutput = self.model.sample(
  475. logits=logits,
  476. sampling_metadata=model_input.sampling_metadata,
  477. )
  478. return [output]