123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341 |
- # coding=utf-8
- # Adapted from
- # https://huggingface.co/core42/jais-30b-chat-v3/blob/main/modeling_jais.py
- # Copyright 2023 The vLLM team.
- # Copyright 2023 the Jais authors and HuggingFace Inc. team. All rights
- # reserved.
- # Copyright 2023 Cerebras Systems.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Inference-only Jais model compatible with HuggingFace weights."""
- import math
- from typing import Iterable, List, Optional, Tuple
- import torch
- from torch import nn
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.config import CacheConfig
- from aphrodite.common.sequence import IntermediateTensors, SamplerOutput
- from aphrodite.distributed import (get_tensor_model_parallel_rank,
- get_tensor_model_parallel_world_size)
- from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
- QKVParallelLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.quantization.base_config import QuantizationConfig
- from aphrodite.transformers_utils.configs import JAISConfig
- class SwiGLUActivation(nn.Module):
- def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
- return x1 * nn.functional.silu(x2)
- def _get_alibi_slopes(n):
- def get_slopes_power_of_2(n):
- start = 2**(-(2**-(math.log2(n) - 3)))
- ratio = start
- return [start * ratio**i for i in range(n)]
- if math.log2(n).is_integer():
- return get_slopes_power_of_2(n)
- else:
- closest_power_of_2 = 2**math.floor(math.log2(n))
- return (get_slopes_power_of_2(closest_power_of_2) + _get_alibi_slopes(
- 2 * closest_power_of_2)[0::2][:n - closest_power_of_2])
- class JAISAttention(nn.Module):
- def __init__(
- self,
- config: JAISConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.hidden_size = config.hidden_size
- total_num_heads = config.num_attention_heads
- tensor_model_parallel_world_size = (
- get_tensor_model_parallel_world_size())
- assert total_num_heads % tensor_model_parallel_world_size == 0
- self.num_heads = total_num_heads // tensor_model_parallel_world_size
- self.head_dim = self.hidden_size // total_num_heads
- if hasattr(config, "scale_qk_dot_by_d"):
- config.mup_scale_qk_dot_by_d = config.scale_qk_dot_by_d
- self.attn_scale_power = 1.0 if config.mup_scale_qk_dot_by_d else 0.5
- self.scale = self.head_dim**-self.attn_scale_power
- self.c_attn = QKVParallelLinear(
- self.hidden_size,
- self.head_dim,
- total_num_heads,
- bias=True,
- quant_config=quant_config,
- )
- self.c_proj = RowParallelLinear(
- self.hidden_size,
- self.hidden_size,
- bias=True,
- quant_config=quant_config,
- )
- tp_rank = get_tensor_model_parallel_rank()
- head_start = tp_rank * self.num_heads
- head_end = (tp_rank + 1) * self.num_heads
- alibi_slopes = _get_alibi_slopes(total_num_heads)
- alibi_slopes = alibi_slopes[head_start:head_end]
- self.attn = Attention(self.num_heads,
- self.head_dim,
- scale=self.scale,
- alibi_slopes=alibi_slopes,
- cache_config=cache_config,
- quant_config=quant_config)
- def forward(
- self,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- qkv, _ = self.c_attn(hidden_states)
- q, k, v = qkv.chunk(chunks=3, dim=-1)
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
- attn_output, _ = self.c_proj(attn_output)
- return attn_output
- class JAISMLP(nn.Module):
- def __init__(
- self,
- intermediate_size: int,
- config: JAISConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- hidden_size = config.hidden_size
- self.swiglu = config.activation_function == "swiglu"
- self.c_fc = ColumnParallelLinear(
- hidden_size,
- intermediate_size,
- bias=True,
- quant_config=quant_config,
- )
- self.c_fc2 = (ColumnParallelLinear(
- hidden_size,
- intermediate_size,
- bias=True,
- quant_config=quant_config,
- ) if self.swiglu else None)
- self.c_proj = RowParallelLinear(
- intermediate_size,
- hidden_size,
- bias=True,
- quant_config=quant_config,
- )
- self.act = SwiGLUActivation()
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- if self.swiglu:
- hidden_states2, _ = self.c_fc2(hidden_states)
- hidden_states, _ = self.c_fc(hidden_states)
- hidden_states = (self.act(hidden_states, hidden_states2)
- if self.swiglu else self.act(hidden_states))
- hidden_states, _ = self.c_proj(hidden_states)
- return hidden_states
- class JAISBlock(nn.Module):
- def __init__(
- self,
- config: JAISConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- hidden_size = config.hidden_size
- inner_dim = (config.n_inner if config.n_inner is not None else 4 *
- hidden_size)
- self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
- self.attn = JAISAttention(config, cache_config, quant_config)
- self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
- self.mlp = JAISMLP(inner_dim, config, quant_config)
- def forward(
- self,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- residual = hidden_states
- hidden_states = self.ln_1(hidden_states)
- attn_output = self.attn(
- hidden_states=hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- # residual connection
- hidden_states = attn_output + residual
- residual = hidden_states
- hidden_states = self.ln_2(hidden_states)
- feed_forward_hidden_states = self.mlp(hidden_states)
- # residual connection
- hidden_states = residual + feed_forward_hidden_states
- return hidden_states
- class JAISModel(nn.Module):
- def __init__(
- self,
- config: JAISConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- assert not config.add_cross_attention
- assert not config.scale_attn_by_inverse_layer_idx
- assert not config.reorder_and_upcast_attn
- self.embed_dim = config.hidden_size
- self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim)
- self.wpe = (nn.Embedding(config.max_position_embeddings,
- self.embed_dim)
- if config.position_embedding_type != "alibi" else None)
- if hasattr(config, "embeddings_scale"):
- self.embeddings_scale = config.embeddings_scale
- else:
- self.embeddings_scale = config.mup_embeddings_scale
- self.h = nn.ModuleList([
- JAISBlock(config, cache_config, quant_config)
- for _ in range(config.num_hidden_layers)
- ])
- self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
- def forward(
- self,
- input_ids: torch.Tensor,
- position_ids: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- inputs_embeds = self.wte(input_ids)
- if self.wpe is not None:
- position_embeds = self.wpe(position_ids)
- hidden_states = inputs_embeds + position_embeds
- else:
- hidden_states = inputs_embeds
- hidden_states *= torch.tensor(float(self.embeddings_scale),
- dtype=hidden_states.dtype)
- for i in range(len(self.h)):
- layer = self.h[i]
- hidden_states = layer(hidden_states, kv_caches[i], attn_metadata)
- hidden_states = self.ln_f(hidden_states)
- return hidden_states
- class JAISLMHeadModel(nn.Module):
- def __init__(
- self,
- config: JAISConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.quant_config = quant_config
- self.transformer = JAISModel(config, cache_config, quant_config)
- self.lm_head = self.transformer.wte
- if hasattr(config, "width_scale"):
- self.output_logits_scale = config.width_scale
- else:
- self.output_logits_scale = (config.mup_output_alpha *
- config.mup_width_scale)
- self.logits_processor = LogitsProcessor(vocab_size=config.vocab_size,
- scale=self.output_logits_scale)
- self.sampler = Sampler()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- ) -> torch.Tensor:
- hidden_states = self.transformer(input_ids, positions, kv_caches,
- attn_metadata)
- return hidden_states
- def compute_logits(
- self,
- hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[torch.Tensor]:
- logits = self.logits_processor(self.lm_head, hidden_states,
- sampling_metadata)
- return logits
- def sample(
- self,
- logits: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- params_dict = dict(self.named_parameters(remove_duplicate=False))
- for name, loaded_weight in weights:
- if "lm_head.weight" in name:
- # GPT-2 ties the weights of the embedding layer and the final
- # linear layer.
- continue
- if ".attn.bias" in name or ".attn.masked_bias" in name:
- # Skip attention mask.
- # NOTE: "c_attn.bias" should not be skipped.
- continue
- if "relative_pe" in name:
- continue
- if not name.startswith("transformer."):
- name = "transformer." + name
- param = params_dict[name]
- # The HF's GPT-2 implementation uses Conv1D instead of Linear.
- # Because of this, we need to transpose the weights.
- # Note(zhuohan): the logic below might break quantized models.
- for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
- if conv1d_weight_name not in name:
- continue
- if not name.endswith(".weight"):
- continue
- loaded_weight = loaded_weight.t()
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|