123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279 |
- # adapted from https://huggingface.co/OpenGVLab/InternVL2-4B/blob/main/modeling_intern_vit.py
- # --------------------------------------------------------
- # InternVL
- # Copyright (c) 2023 OpenGVLab
- # Licensed under The MIT License [see LICENSE for details]
- # --------------------------------------------------------
- from typing import Iterable, Optional, Tuple
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from transformers import PretrainedConfig
- from aphrodite.modeling.layers.activation import get_act_fn
- from aphrodite.modeling.layers.layernorm import RMSNorm
- from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
- RowParallelLinear)
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.quantization import QuantizationConfig
- NORM2FN = {
- 'rms_norm': RMSNorm,
- 'layer_norm': nn.LayerNorm,
- }
- class InternVisionEmbeddings(nn.Module):
- def __init__(self, config: PretrainedConfig):
- super().__init__()
- self.config = config
- self.embed_dim = config.hidden_size
- self.image_size = config.image_size
- self.patch_size = config.patch_size
- self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim))
- self.patch_embedding = nn.Conv2d(in_channels=3,
- out_channels=self.embed_dim,
- kernel_size=self.patch_size,
- stride=self.patch_size)
- self.num_patches = (self.image_size // self.patch_size)**2
- self.num_positions = self.num_patches + 1
- self.position_embedding = nn.Parameter(
- torch.randn(1, self.num_positions, self.embed_dim))
- def _get_pos_embed(self, pos_embed, H, W):
- target_dtype = pos_embed.dtype
- pos_embed = pos_embed.float().reshape(
- 1, self.image_size // self.patch_size,
- self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
- pos_embed = F.interpolate(pos_embed,
- size=(H, W),
- mode='bicubic',
- align_corners=False)
- pos_embed = pos_embed.reshape(1, -1, H * W).permute(0, 2,
- 1).to(target_dtype)
- return pos_embed
- def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
- target_dtype = self.patch_embedding.weight.dtype
- patch_embeds = self.patch_embedding(pixel_values.to(
- target_dtype)) # shape = [*, channel, width, height]
- batch_size, _, height, width = patch_embeds.shape
- patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
- class_embeds = self.class_embedding.expand(batch_size, 1,
- -1).to(target_dtype)
- embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
- position_embedding = torch.cat([
- self.position_embedding[:, :1, :],
- self._get_pos_embed(self.position_embedding[:, 1:, :], height,
- width)
- ],
- dim=1)
- embeddings = embeddings + position_embedding.to(target_dtype)
- return embeddings
- class InternAttention(nn.Module):
- """Multi-headed attention from 'Attention Is All You Need' paper"""
- def __init__(self, config: PretrainedConfig):
- super().__init__()
- self.config = config
- self.embed_dim = config.hidden_size
- self.num_heads = config.num_attention_heads
- self.head_dim = self.embed_dim // self.num_heads
- if self.head_dim * self.num_heads != self.embed_dim:
- raise ValueError(
- f'embed_dim must be divisible by num_heads '
- f'(got `embed_dim`: {self.embed_dim} and `num_heads`:'
- f' {self.num_heads}).')
- self.scale = self.head_dim**-0.5
- self.qkv = nn.Linear(self.embed_dim,
- 3 * self.embed_dim,
- bias=config.qkv_bias)
- self.qk_normalization = config.qk_normalization
- if self.qk_normalization:
- self.q_norm = RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
- self.k_norm = RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
- self.proj = nn.Linear(self.embed_dim, self.embed_dim)
- def forward(self, x):
- B, N, C = x.shape
- qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
- C // self.num_heads).permute(2, 0, 3, 1, 4)
- q, k, v = qkv.unbind(0)
- if self.qk_normalization:
- B_, H_, N_, D_ = q.shape
- q = self.q_norm.forward_native(q.transpose(1, 2).flatten(
- -2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
- k = self.k_norm.forward_native(k.transpose(1, 2).flatten(
- -2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
- x = F.scaled_dot_product_attention(q, k, v, scale=self.scale)
- x = x.transpose(1, 2).reshape(B, N, C)
- x = self.proj(x)
- return x
- class InternMLP(nn.Module):
- def __init__(self,
- config: PretrainedConfig,
- quant_config: Optional[QuantizationConfig] = None):
- super().__init__()
- self.config = config
- self.activation_fn = get_act_fn(config.hidden_act)
- self.fc1 = ColumnParallelLinear(config.hidden_size,
- config.intermediate_size,
- bias=True,
- quant_config=quant_config)
- self.fc2 = RowParallelLinear(config.intermediate_size,
- config.hidden_size,
- bias=True,
- quant_config=quant_config)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states, _ = self.fc1(hidden_states)
- hidden_states = self.activation_fn(hidden_states)
- hidden_states, _ = self.fc2(hidden_states)
- return hidden_states
- class InternVisionEncoderLayer(nn.Module):
- def __init__(self,
- config: PretrainedConfig,
- quant_config: Optional[QuantizationConfig] = None):
- super().__init__()
- self.embed_dim = config.hidden_size
- self.intermediate_size = config.intermediate_size
- self.norm_type = config.norm_type
- self.attn = InternAttention(config)
- self.mlp = InternMLP(config, quant_config=quant_config)
- self.norm1 = NORM2FN[self.norm_type](self.embed_dim,
- eps=config.layer_norm_eps)
- self.norm2 = NORM2FN[self.norm_type](self.embed_dim,
- eps=config.layer_norm_eps)
- self.ls1 = nn.Parameter(config.initializer_factor *
- torch.ones(self.embed_dim))
- self.ls2 = nn.Parameter(config.initializer_factor *
- torch.ones(self.embed_dim))
- def forward(
- self,
- hidden_states: torch.Tensor,
- ):
- hidden_states = hidden_states + self.attn(
- self.norm1(hidden_states)) * self.ls1
- hidden_states = hidden_states + self.mlp(
- self.norm2(hidden_states)) * self.ls2
- return hidden_states
- class InternVisionEncoder(nn.Module):
- def __init__(self,
- config: PretrainedConfig,
- quant_config: Optional[QuantizationConfig] = None,
- num_hidden_layers_override: Optional[int] = None):
- super().__init__()
- self.config = config
- if num_hidden_layers_override is None:
- num_hidden_layers = config.num_hidden_layers
- else:
- num_hidden_layers = num_hidden_layers_override
- self.layers = nn.ModuleList([
- InternVisionEncoderLayer(config=config, quant_config=quant_config)
- for _ in range(num_hidden_layers)
- ])
- def forward(self, inputs_embeds: torch.Tensor):
- hidden_states = inputs_embeds
- for encoder_layer in self.layers:
- hidden_states = encoder_layer(hidden_states)
- return hidden_states
- class InternVisionModel(nn.Module):
- def __init__(self,
- config: PretrainedConfig,
- quant_config: Optional[QuantizationConfig] = None,
- num_hidden_layers_override: Optional[int] = None):
- super().__init__()
- self.config = config
- self.embeddings = InternVisionEmbeddings(config)
- self.encoder = InternVisionEncoder(
- config=config,
- quant_config=quant_config,
- num_hidden_layers_override=num_hidden_layers_override)
- def resize_pos_embeddings(self, old_size, new_size, patch_size):
- pos_emb = self.embeddings.position_embedding
- _, num_positions, embed_dim = pos_emb.shape
- cls_emb = pos_emb[:, :1, :]
- pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size,
- old_size // patch_size,
- -1).permute(0, 3, 1, 2)
- pos_emb = F.interpolate(pos_emb.float(),
- size=new_size // patch_size,
- mode='bicubic',
- align_corners=False)
- pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim,
- -1).permute(0, 2, 1)
- pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
- self.embeddings.position_embedding = nn.Parameter(pos_emb)
- self.embeddings.image_size = new_size
- def get_input_embeddings(self):
- return self.embeddings
- def forward(
- self,
- pixel_values: Optional[torch.Tensor] = None,
- pixel_embeds: Optional[torch.Tensor] = None,
- ) -> torch.FloatTensor:
- if pixel_values is None and pixel_embeds is None:
- raise ValueError(
- 'You have to specify pixel_values or pixel_embeds')
- if pixel_embeds is not None:
- hidden_states = pixel_embeds
- elif pixel_values is not None:
- if pixel_values.ndim == 4:
- hidden_states = self.embeddings(pixel_values)
- else:
- raise ValueError(
- f'wrong pixel_values size: {pixel_values.shape}')
- encoder_outputs = self.encoder(inputs_embeds=hidden_states)
- return encoder_outputs
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- params_dict = dict(self.named_parameters())
- for name, loaded_weight in weights:
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|