123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- """
- Based on:
- Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., & Krishnamurthy, A. (2023).
- Punica: Multi-Tenant LoRA Serving.
- https://arxiv.org/abs/2310.18547
- """
- import torch
- import triton
- import triton.language as tl
- from .utils import get_lora_op_configs
- @triton.jit
- def _bgmv_shrink_kernel(
- input_ptr,
- lora_ptr,
- out_ptr,
- N,
- K,
- lora_indices,
- scaling,
- xm_stride,
- xk_stride,
- l0_stride,
- lora_k_stride,
- lora_n_stride,
- cm_stride,
- cn_stride,
- BLOCK_N: tl.constexpr,
- BLOCK_K: tl.constexpr,
- SPLIT_K: tl.constexpr,
- ):
- """
- GroupGEMV, additionally, introducing SPLIT-K can improve large hidden_size's
- performance
- """
- pid_sk = tl.program_id(axis=0)
- cur_batch = tl.program_id(axis=1)
- lora_index = tl.load(lora_indices + cur_batch)
- if lora_index == -1:
- return
- offset_n = tl.arange(0, BLOCK_N)
- offset_k = tl.arange(0, BLOCK_K) + pid_sk * BLOCK_K
- a_ptr = input_ptr + cur_batch * xm_stride
- b_ptr = lora_ptr + l0_stride * lora_index
- accumulator = tl.zeros((BLOCK_N, ), dtype=tl.float32)
- for k in range(0, K, BLOCK_K * SPLIT_K):
- current_k = k + offset_k
- current_k_c = tl.max_contiguous(current_k, BLOCK_K)
- tiled_a = tl.load(
- a_ptr + current_k_c,
- mask=current_k < K,
- other=0.0,
- ) # [BLOCK_K]
- b_ptr_mask = (offset_n[:, None] < N) & (current_k[None, :] < K)
- tiled_b = tl.load(
- b_ptr + offset_n[:, None] * lora_k_stride +
- current_k[None, :] * lora_n_stride,
- mask=b_ptr_mask,
- other=0.0,
- ) # [BLOCK_N,BLOCK_K]
- accumulator += tl.sum(tiled_a * tiled_b, 1)
- accumulator *= scaling
- offset_cn = tl.arange(0, BLOCK_N)
- c_ptr = out_ptr + cur_batch * cm_stride + offset_cn * cn_stride
- c_mask = offset_cn < N
- if SPLIT_K == 1:
- tl.store(c_ptr, accumulator, mask=c_mask)
- else:
- tl.atomic_add(c_ptr, accumulator, mask=c_mask)
- @torch.inference_mode()
- def _bgmv_shrink(
- inputs: torch.Tensor,
- lora_a_weights: torch.Tensor,
- output_tensor: torch.Tensor,
- lora_indices_tensor: torch.Tensor,
- scaling: float = 1.0,
- ) -> None:
- """
- Args:
- inputs (torch.Tensor): input tensor
- lora_a_weights (torch.Tensor): lora'a weight
- output_tensor (torch.Tensor): output tensor
- lora_indices_tensor (torch.Tensor): (batch_size,). The LoRA index
- corresponding to each batch. An index of -1 means no lora should be
- applied.
- batches (int): batch size
- scaling (float): Scaling factor.
- """
- assert inputs.dtype == lora_a_weights.dtype
- assert inputs.dtype in [torch.float16, torch.bfloat16]
- assert lora_a_weights.dtype in [
- torch.float16,
- torch.bfloat16,
- ]
- assert inputs.size(1) == lora_a_weights.size(-1)
- assert inputs.is_contiguous()
- if lora_a_weights.ndim == 4: # shape:(lora_num,1,rank, size)
- assert lora_a_weights.size(1) == 1
- lora_a_weights = lora_a_weights.squeeze(dim=1)
- else:
- assert lora_a_weights.ndim == 3 # shape:(lora_num,rank, size)
- assert lora_a_weights.is_contiguous()
- assert output_tensor.is_contiguous()
- # TODO tuning this config
- batches = lora_indices_tensor.size(0)
- N, K = lora_a_weights.shape[-2:] # K=hidden_size,N=rank
- BLOCK_N = triton.next_power_of_2(N)
- # First try to load optimal config from the file
- config = get_lora_op_configs("bgmv_shrink", batches, K)
- grid = lambda META: (
- META["SPLIT_K"],
- batches,
- )
- _bgmv_shrink_kernel[grid](
- inputs,
- lora_a_weights,
- output_tensor,
- N,
- K,
- lora_indices_tensor,
- scaling,
- inputs.stride(0),
- inputs.stride(1),
- lora_a_weights.stride(0),
- lora_a_weights.stride(1),
- lora_a_weights.stride(2),
- output_tensor.stride(0),
- output_tensor.stride(1),
- BLOCK_N=BLOCK_N,
- **config,
- )
- return
- bgmv_shrink = torch.library.custom_op("lora::bgmv_shrink",
- _bgmv_shrink,
- mutates_args=["output_tensor"])
|