outlines_logits_processors.py 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176
  1. # Copyright 2024- the Outlines developers
  2. # This file is adapted from
  3. # https://github.com/outlines-dev/outlines/blob/main/outlines/serve/vllm.py
  4. #
  5. # Licensed under the Apache License, Version 2.0 (the "License");
  6. # you may not use this file except in compliance with the License.
  7. # You may obtain a copy of the License at
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import copy
  15. import json
  16. import math
  17. from collections import defaultdict
  18. from functools import lru_cache
  19. from typing import Callable, DefaultDict, Dict, List, Optional, Union
  20. import torch
  21. from outlines.fsm.fsm import CFGFSM, RegexFSM
  22. from outlines.fsm.json_schema import build_regex_from_schema
  23. from pydantic import BaseModel
  24. from transformers import PreTrainedTokenizerBase
  25. class BaseLogitsProcessor:
  26. def init_state(self):
  27. """Initialize the FSM states."""
  28. self.fsm_state: DefaultDict[int, int] = defaultdict(int)
  29. def __call__(self, input_ids: List[int],
  30. scores: torch.Tensor) -> torch.Tensor:
  31. """Use the FSM to bias the logits before sampling the next token."""
  32. seq_id = hash(tuple(input_ids))
  33. if len(input_ids) == 0:
  34. self.init_state()
  35. else:
  36. last_token = input_ids[-1]
  37. last_seq_id = hash(tuple(input_ids[:-1]))
  38. self.fsm_state[seq_id] = self.fsm.next_state(
  39. self.fsm_state[last_seq_id], last_token)
  40. allowed_tokens = self.fsm.allowed_token_ids(self.fsm_state[seq_id])
  41. mask = torch.full((scores.shape[-1], ),
  42. -math.inf,
  43. device=scores.device)
  44. mask[allowed_tokens] = 0
  45. scores.add_(mask)
  46. return scores
  47. class RegexLogitsProcessor(BaseLogitsProcessor):
  48. def __init__(self, regex_string: str, tokenizer: PreTrainedTokenizerBase):
  49. """Compile the FSM that drives the regex-structured generation.
  50. Parameters
  51. ----------
  52. regex_string
  53. A string that represents a regular expression
  54. tokenizer
  55. The model's tokenizer
  56. """
  57. tokenizer = _adapt_tokenizer(tokenizer)
  58. fsm = RegexFSM(regex_string, tokenizer)
  59. self.fsm = fsm
  60. class JSONLogitsProcessor(RegexLogitsProcessor):
  61. def __init__(self,
  62. schema: Union[str, Dict, BaseModel],
  63. tokenizer: PreTrainedTokenizerBase,
  64. whitespace_pattern: Optional[str] = None):
  65. """Compile the FSM that drives the JSON-guided generation.
  66. Parameters
  67. ----------
  68. schema
  69. A JSON schema that encodes the structure we want the model to
  70. generate
  71. tokenizer
  72. The model's tokenizer
  73. whitespace_pattern
  74. Pattern to use for JSON syntactic whitespace (doesn't impact
  75. string literals)
  76. Example: allow only a single space or newline with
  77. `whitespace_pattern=r"[\n ]?"`
  78. """
  79. if isinstance(schema, type(BaseModel)):
  80. schema_str = json.dumps(schema.model_json_schema())
  81. elif isinstance(schema, Dict):
  82. schema_str = json.dumps(schema)
  83. elif isinstance(schema, str):
  84. schema_str = schema
  85. else:
  86. raise ValueError(
  87. f"Cannot parse schema {schema}. The schema must be either "
  88. f"a Pydantic object, a dictionary or a string that contains "
  89. f"the JSON Schema specification")
  90. regex_string = build_regex_from_schema(schema_str, whitespace_pattern)
  91. super().__init__(regex_string, tokenizer)
  92. class CFGLogitsProcessor(BaseLogitsProcessor):
  93. def __init__(self, cfg: str, tokenizer: PreTrainedTokenizerBase):
  94. """Compile the FSM that drives the context free grammar generation.
  95. Parameters
  96. ----------
  97. cfg
  98. A string that represents a context-free grammar
  99. tokenizer
  100. The model's tokenizer
  101. """
  102. tokenizer = _adapt_tokenizer(tokenizer)
  103. fsm = CFGFSM(cfg, tokenizer)
  104. self.fsm = fsm
  105. @lru_cache
  106. def _adapt_tokenizer(tokenizer: PreTrainedTokenizerBase):
  107. """Adapt Aphrodite's tokenizer to use to compile the FSM.
  108. The API of Outlines tokenizers is slightly different to that of
  109. `transformers`. The decoder of outlines, returns a list whereas
  110. the decode of Aphrodite returns an str. To sync the Aphrodite decoder with
  111. outlines internal api, the decoder should be adapted. In addition
  112. we need to handle the missing spaces to Llama's tokenizer to be
  113. able to compile FSMs for this model.
  114. """
  115. if getattr(tokenizer, "_outlines_adapted", False):
  116. return tokenizer
  117. tokenizer = copy.deepcopy(tokenizer)
  118. tokenizer.vocabulary = tokenizer.get_vocab()
  119. tokenizer.special_tokens = set(tokenizer.all_special_tokens)
  120. def convert_token_to_string(token: str) -> str:
  121. from transformers.file_utils import SPIECE_UNDERLINE
  122. string = tokenizer.convert_tokens_to_string([token])
  123. # A hack to handle missing spaces to HF's Llama tokenizers
  124. if token.startswith(SPIECE_UNDERLINE) or token == "<0x20>":
  125. return " " + string
  126. return string
  127. def change_decoder(
  128. decoder: Callable[[List[int]],
  129. str]) -> Callable[[List[int]], List[str]]:
  130. """Sync vLLM's decoder with the outlines by returning list."""
  131. def new_decoder(inp_tokens: List[int]) -> List[str]:
  132. return [decoder(inp_tokens)]
  133. return new_decoder
  134. tokenizer.convert_token_to_string = convert_token_to_string
  135. tokenizer.decode = change_decoder(tokenizer.decode)
  136. setattr(tokenizer, "_outlines_adapted", True) # noqa: B010
  137. return tokenizer