1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- """A Neuron worker class."""
- from typing import List, Tuple
- import torch
- import torch.distributed
- from aphrodite.common.config import (CacheConfig, DeviceConfig, ModelConfig,
- ParallelConfig, SchedulerConfig)
- from aphrodite.common.sequence import SamplerOutput, SequenceGroupMetadata
- from aphrodite.modeling import set_random_seed
- from aphrodite.task_handler.neuron_model_runner import NeuronModelRunner
- from aphrodite.task_handler.worker_base import LoraNotSupportedWorkerBase
- class NeuronWorker(LoraNotSupportedWorkerBase):
- """A worker class that executes the model on a group of neuron cores.
- """
- def __init__(
- self,
- model_config: ModelConfig,
- parallel_config: ParallelConfig,
- scheduler_config: SchedulerConfig,
- device_config: DeviceConfig,
- cache_config: CacheConfig,
- ) -> None:
- self.model_config = model_config
- self.parallel_config = parallel_config
- self.scheduler_config = scheduler_config
- self.device_config = device_config
- self.cache_config = cache_config
- if self.model_config.trust_remote_code:
- # note: lazy import to avoid importing torch before initializing
- from aphrodite.common.utils import init_cached_hf_modules
- init_cached_hf_modules()
- self.model_runner = NeuronModelRunner(model_config, parallel_config,
- scheduler_config, device_config)
- def init_device(self) -> None:
- # Set random seed.
- set_random_seed(self.model_config.seed)
- def load_model(self):
- self.model_runner.load_model()
- def determine_num_available_blocks(self) -> Tuple[int, int]:
- """Determine the number of available KV blocks.
- Swapping is not yet supported, so always return num_cpu_blocks=0.
- We configure num_gpu_blocks to be equal to max_num_seqs.
- """
- # Set the number of GPU blocks to be the same as the maximum number of
- # sequences that can be processed in a single batch. This is equivalent
- # to schedule without PagedAttention.
- num_gpu_blocks = self.scheduler_config.max_num_seqs
- # Swap not yet supported with Neuron backend.
- num_cpu_blocks = 0
- return num_gpu_blocks, num_cpu_blocks
- def initialize_cache(self, num_gpu_blocks: int,
- num_cpu_blocks: int) -> None:
- """Initialize the KV cache.
- """
- # Different values are not tested.
- assert num_cpu_blocks == 0
- assert num_gpu_blocks == self.scheduler_config.max_num_seqs
- self.cache_config.num_gpu_blocks = num_gpu_blocks
- self.cache_config.num_cpu_blocks = num_cpu_blocks
- @torch.inference_mode()
- def execute_model(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- ) -> List[SamplerOutput]:
- num_seq_groups = len(seq_group_metadata_list)
- # If there is no input, we don't need to execute the model.
- if num_seq_groups == 0:
- return []
- output = self.model_runner.execute_model(seq_group_metadata_list)
- # Neuron worker only supports single-step output. Wrap the output in a
- # list to conform to interface.
- return [output]
- def get_cache_block_size_bytes(self) -> int:
- """Determine the size in bytes of a cache block.
- This is required for speculative decoding; it is not yet implemented.
- """
- raise NotImplementedError
|