123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349 |
- import time
- from typing import (
- AsyncGenerator,
- AsyncIterator,
- Callable,
- Dict,
- List,
- Optional,
- Tuple,
- )
- from fastapi import Request
- from aphrodite.common.outputs import RequestOutput
- from aphrodite.common.utils import merge_async_iterators, random_uuid
- from aphrodite.endpoints.openai.protocol import (
- CompletionRequest,
- CompletionResponse,
- CompletionResponseChoice,
- CompletionResponseStreamChoice,
- CompletionStreamResponse,
- LogProbs,
- UsageInfo,
- )
- from aphrodite.endpoints.openai.serving_engine import LoRA, OpenAIServing
- from aphrodite.engine.async_aphrodite import AsyncAphrodite
- from aphrodite.modeling.guided_decoding import (
- get_guided_decoding_logits_processor)
- TypeTokenIDs = List[int]
- TypeTopLogProbs = List[Optional[Dict[int, float]]]
- TypeCreateLogProbsFn = Callable[
- [TypeTokenIDs, TypeTopLogProbs, Optional[int], int], LogProbs]
- def parse_prompt_format(prompt) -> Tuple[bool, list]:
- # get the prompt, openai supports the following
- # "a string, array of strings, array of tokens, or array of token arrays."
- prompt_is_tokens = False
- prompts = [prompt] # case 1: a string
- if isinstance(prompt, list):
- if len(prompt) == 0:
- raise ValueError("please provide at least one prompt")
- elif isinstance(prompt[0], str):
- prompt_is_tokens = False
- prompts = prompt # case 2: array of strings
- elif isinstance(prompt[0], int):
- prompt_is_tokens = True
- prompts = [prompt] # case 3: array of tokens
- elif isinstance(prompt[0], list) and isinstance(prompt[0][0], int):
- prompt_is_tokens = True
- prompts = prompt # case 4: array of token arrays
- else:
- raise ValueError("prompt must be a string, array of strings, "
- "array of tokens, or array of token arrays")
- return prompt_is_tokens, prompts
- class OpenAIServingCompletion(OpenAIServing):
- def __init__(self,
- engine: AsyncAphrodite,
- served_model_names: List[str],
- lora_modules: Optional[List[LoRA]] = None):
- super().__init__(engine=engine,
- served_model_names=served_model_names,
- lora_modules=lora_modules)
- async def create_completion(self, request: CompletionRequest,
- raw_request: Request):
- """Completion API similar to OpenAI's API.
- See https://platform.openai.com/docs/api-reference/completions/create
- for the API specification. This API mimics the OpenAI Completion API.
- NOTE: Currently we do not support the following feature:
- - suffix (the language models we currently support do not support
- suffix)
- """
- error_check_ret = await self._check_model(request)
- if error_check_ret is not None:
- return error_check_ret
- # Return error for unsupported features.
- if request.suffix is not None:
- return self.create_error_response(
- "suffix is not currently supported")
- model_name = self.served_model_names[0]
- request_id = f"cmpl-{random_uuid()}"
- created_time = int(time.time())
- # Schedule the request and get the result generator.
- generators = []
- try:
- sampling_params = request.to_sampling_params(
- self.tokenizer.vocab_size)
- lora_request = self._maybe_get_lora(request)
- decoding_config = self.engine.engine.decoding_config
- guided_decoding_backend = request.guided_decoding_backend \
- or decoding_config.guided_decoding_backend
- guided_decode_logit_processor = (
- await get_guided_decoding_logits_processor(
- guided_decoding_backend, request, await
- self.engine.get_tokenizer()))
- if guided_decode_logit_processor is not None:
- sampling_params.logits_processors.append(
- guided_decode_logit_processor)
- prompt_is_tokens, prompts = parse_prompt_format(request.prompt)
- for i, prompt in enumerate(prompts):
- if prompt_is_tokens:
- prompt_formats = self._validate_prompt_and_tokenize(
- request,
- prompt_ids=prompt,
- truncate_prompt_tokens=sampling_params.
- truncate_prompt_tokens)
- else:
- prompt_formats = self._validate_prompt_and_tokenize(
- request,
- prompt=prompt,
- truncate_prompt_tokens=sampling_params.
- truncate_prompt_tokens)
- prompt_ids, prompt_text = prompt_formats
- generators.append(
- self.engine.generate(prompt_text,
- sampling_params,
- f"{request_id}-{i}",
- prompt_token_ids=prompt_ids,
- lora_request=lora_request))
- except ValueError as e:
- # TODO: Use a specific-specific Validation Error
- return self.create_error_response(str(e))
- result_generator: AsyncIterator[Tuple[
- int, RequestOutput]] = merge_async_iterators(*generators)
- # Similar to the OpenAI API, when n != best_of, we do not stream the
- # results. In addition, we do not stream the results when use
- # beam search.
- stream = (request.stream
- and (request.best_of is None or request.n == request.best_of)
- and not request.use_beam_search)
- # Streaming response
- if stream:
- return self.completion_stream_generator(request,
- raw_request,
- result_generator,
- request_id,
- created_time,
- model_name,
- num_prompts=len(prompts))
- # Non-streaming response
- final_res_batch: RequestOutput = [None] * len(prompts)
- try:
- async for i, res in result_generator:
- if await raw_request.is_disconnected():
- # Abort the request if the client disconnects.
- await self.engine.abort(f"{request_id}-{i}")
- return self.create_error_response("Client disconnected")
- final_res_batch[i] = res
- response = self.request_output_to_completion_response(
- final_res_batch, request, request_id, created_time, model_name)
- except ValueError as e:
- # TODO: Use a aphrodite-specific Validation Error
- return self.create_error_response(str(e))
- # When user requests streaming but we don't stream, we still need to
- # return a streaming response with a single event.
- if request.stream:
- response_json = response.model_dump_json()
- async def fake_stream_generator() -> AsyncGenerator[str, None]:
- yield f"data: {response_json}\n\n"
- yield "data: [DONE]\n\n"
- return fake_stream_generator()
- return response
- async def completion_stream_generator(
- self,
- request: CompletionRequest,
- raw_request: Request,
- result_generator: AsyncIterator[Tuple[int, RequestOutput]],
- request_id: str,
- created_time: int,
- model_name: str,
- num_prompts: int,
- ) -> AsyncGenerator[str, None]:
- previous_texts = [""] * request.n * num_prompts
- previous_num_tokens = [0] * request.n * num_prompts
- has_echoed = [False] * request.n * num_prompts
- try:
- async for prompt_idx, res in result_generator:
- # Abort the request if the client disconnects.
- if await raw_request.is_disconnected():
- await self.engine.abort(f"{request_id}-{prompt_idx}")
- raise StopAsyncIteration()
- for output in res.outputs:
- i = output.index + prompt_idx * request.n
- # TODO: optimize the performance by avoiding full
- # text O(n^2) sending.
- if request.echo and request.max_tokens == 0:
- # only return the prompt
- delta_text = res.prompt
- delta_token_ids = res.prompt_token_ids
- top_logprobs = res.prompt_logprobs
- has_echoed[i] = True
- elif (request.echo and request.max_tokens > 0
- and not has_echoed[i]):
- # echo the prompt and first token
- delta_text = res.prompt + output.text
- delta_token_ids = (res.prompt_token_ids +
- output.token_ids)
- top_logprobs = res.prompt_logprobs + (output.logprobs
- or [])
- has_echoed[i] = True
- else:
- # return just the delta
- delta_text = output.text[len(previous_texts[i]):]
- delta_token_ids = output.token_ids[
- previous_num_tokens[i]:]
- top_logprobs = output.logprobs[previous_num_tokens[
- i]:] if output.logprobs else None
- if request.logprobs is not None:
- logprobs = self._create_logprobs(
- token_ids=delta_token_ids,
- top_logprobs=top_logprobs,
- num_output_top_logprobs=request.logprobs,
- initial_text_offset=len(previous_texts[i]),
- )
- else:
- logprobs = None
- previous_texts[i] = output.text
- previous_num_tokens[i] = len(output.token_ids)
- finish_reason = output.finish_reason
- stop_reason = output.stop_reason
- if output.finish_reason is not None: # return final usage
- prompt_tokens = len(res.prompt_token_ids)
- completion_tokens = len(output.token_ids)
- final_usage = UsageInfo(
- prompt_tokens=prompt_tokens,
- completion_tokens=completion_tokens,
- total_tokens=prompt_tokens + completion_tokens,
- )
- else:
- final_usage = None
- response_json = CompletionStreamResponse(
- id=request_id,
- created=created_time,
- model=model_name,
- choices=[
- CompletionResponseStreamChoice(
- index=i,
- text=delta_text,
- logprobs=logprobs,
- finish_reason=finish_reason,
- stop_reason=stop_reason,
- )
- ],
- usage=final_usage,
- ).model_dump_json(exclude_unset=True)
- yield f"data: {response_json}\n\n"
- except ValueError as e:
- # TODO: Use an aphrodite-specific Validation Error
- data = self.create_streaming_error_response(str(e))
- yield f"data: {data}\n\n"
- yield "data: [DONE]\n\n"
- def request_output_to_completion_response(
- self,
- final_res_batch: List[RequestOutput],
- request: CompletionRequest,
- request_id: str,
- created_time: int,
- model_name: str,
- ) -> CompletionResponse:
- choices = []
- num_prompt_tokens = 0
- num_generated_tokens = 0
- for final_res in final_res_batch:
- assert final_res is not None
- prompt_token_ids = final_res.prompt_token_ids
- prompt_logprobs = final_res.prompt_logprobs
- prompt_text = final_res.prompt
- for output in final_res.outputs:
- if request.echo and request.max_tokens == 0:
- token_ids = prompt_token_ids
- top_logprobs = prompt_logprobs
- output_text = prompt_text
- elif request.echo and request.max_tokens > 0:
- token_ids = prompt_token_ids + output.token_ids
- top_logprobs = (prompt_logprobs + output.logprobs
- if request.logprobs else None)
- output_text = prompt_text + output.text
- else:
- token_ids = output.token_ids
- top_logprobs = output.logprobs
- output_text = output.text
- if request.logprobs is not None:
- assert top_logprobs is not None, (
- "top_logprobs must be provided when logprobs "
- "is requested")
- logprobs = self._create_logprobs(
- token_ids=token_ids,
- top_logprobs=top_logprobs,
- num_output_top_logprobs=request.logprobs,
- )
- else:
- logprobs = None
- choice_data = CompletionResponseChoice(
- index=len(choices),
- text=output_text,
- logprobs=logprobs,
- finish_reason=output.finish_reason,
- stop_reason=output.stop_reason,
- )
- choices.append(choice_data)
- num_prompt_tokens += len(prompt_token_ids)
- num_generated_tokens += sum(
- len(output.token_ids) for output in final_res.outputs)
- usage = UsageInfo(
- prompt_tokens=num_prompt_tokens,
- completion_tokens=num_generated_tokens,
- total_tokens=num_prompt_tokens + num_generated_tokens,
- )
- return CompletionResponse(
- id=request_id,
- created=created_time,
- model=model_name,
- choices=choices,
- usage=usage,
- )
|