123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529 |
- """Inference-only Snowflake Arctic model."""
- from typing import Iterable, List, Optional, Tuple
- import torch
- from loguru import logger
- from torch import nn
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.config import CacheConfig
- from aphrodite.common.sequence import SamplerOutput
- from aphrodite.distributed import (get_tensor_model_parallel_rank,
- get_tensor_model_parallel_world_size,
- tensor_model_parallel_all_reduce)
- from aphrodite.modeling.layers.activation import SiluAndMul
- from aphrodite.modeling.layers.fused_moe import fused_experts, fused_topk
- from aphrodite.modeling.layers.layernorm import RMSNorm
- from aphrodite.modeling.layers.linear import (MergedColumnParallelLinear,
- QKVParallelLinear,
- ReplicatedLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.rotary_embedding import get_rope
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- ParallelLMHead, VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.modeling.utils import set_weight_attrs
- from aphrodite.quantization.base_config import QuantizationConfig
- from aphrodite.quantization.deepspeedfp import (DeepSpeedFPConfig,
- DeepSpeedFPParameter)
- from aphrodite.transformers_utils.configs.arctic import ArcticConfig
- class ArcticMLP(nn.Module):
- def __init__(self,
- config: ArcticConfig,
- layer_id: int,
- expert_id: int = -1,
- is_residual_mlp: bool = False,
- quant_config: Optional[QuantizationConfig] = None,
- reduce_results: bool = True):
- super(ArcticMLP, self).__init__()
- self.hidden_size = config.hidden_size
- self.expert_id = expert_id
- self.layer_id = layer_id
- self.ffn_dim = config.intermediate_size if not is_residual_mlp \
- else self.hidden_size
- self.w13 = MergedColumnParallelLinear(self.hidden_size,
- [self.ffn_dim] * 2,
- bias=False,
- quant_config=quant_config)
- self.w2 = RowParallelLinear(self.ffn_dim,
- self.hidden_size,
- bias=False,
- reduce_results=reduce_results,
- quant_config=quant_config)
- if config.hidden_act != "silu":
- raise ValueError(f"Unsupported activation: {config.hidden_act}. "
- "Only silu is supported for now.")
- self.act_fn = SiluAndMul()
- def forward(self, hidden_states):
- gate_up, _ = self.w13(hidden_states)
- hidden_states = self.act_fn(gate_up)
- hidden_states, _ = self.w2(hidden_states)
- return hidden_states
- class ArcticMoE(nn.Module):
- """
- Model-parallel implementation of Arctic MoE Layer.
- """
- def __init__(self,
- config: ArcticConfig,
- layer_id: int,
- tp_size: Optional[int] = None,
- params_dtype: Optional[torch.dtype] = None,
- quant_config: Optional[QuantizationConfig] = None,
- reduce_results: bool = True):
- super(ArcticMoE, self).__init__()
- self.tp_size = tp_size or get_tensor_model_parallel_world_size()
- self.hidden_size = config.hidden_size
- self.num_experts = config.num_local_experts
- self.layer_id = layer_id
- self.top_k = config.num_experts_per_tok
- self.intermediate_size = config.intermediate_size // self.tp_size
- self.is_moe_layer = (layer_id + 1) % config.moe_layer_frequency == 0
- self.is_quant = isinstance(quant_config, DeepSpeedFPConfig)
- self.reduce_results = reduce_results
- # Some other parameters
- if params_dtype is None:
- params_dtype = torch.get_default_dtype()
- self.params_dtype = params_dtype
- if not self.is_moe_layer:
- self.mlp = ArcticMLP(config,
- layer_id=layer_id,
- quant_config=quant_config,
- reduce_results=reduce_results)
- else:
- self.gate = ReplicatedLinear(self.hidden_size,
- self.num_experts,
- bias=False,
- params_dtype=self.params_dtype,
- quant_config=quant_config)
- if self.is_quant:
- self.ws = DeepSpeedFPParameter(
- torch.Size((self.num_experts, 2 * self.intermediate_size,
- self.hidden_size)),
- params_dtype=params_dtype,
- quant_config=quant_config,
- )
- self.w2s = DeepSpeedFPParameter(
- torch.Size((self.num_experts, self.hidden_size,
- self.intermediate_size)),
- params_dtype=params_dtype,
- quant_config=quant_config,
- )
- else:
- self.ws = nn.Parameter(
- torch.empty(self.num_experts,
- 2 * self.intermediate_size,
- self.hidden_size,
- device="cuda",
- dtype=self.params_dtype))
- self.w2s = nn.Parameter(
- torch.empty(self.num_experts,
- self.hidden_size,
- self.intermediate_size,
- device="cuda",
- dtype=self.params_dtype))
- set_weight_attrs(self.ws, {
- "weight_loader": self.weight_loader,
- })
- set_weight_attrs(self.w2s, {
- "weight_loader": self.weight_loader,
- })
- def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
- weight_name: str, expert_id: int):
- tp_rank = get_tensor_model_parallel_rank()
- param_data = param.ds_dequantize() if self.is_quant else param.data
- shard_size = self.intermediate_size
- shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
- if weight_name.endswith("w1.weight"):
- param_data[expert_id, 0:shard_size, :] = loaded_weight[shard, :]
- if weight_name.endswith("w3.weight"):
- param_data[expert_id,
- shard_size:2 * shard_size, :] = loaded_weight[shard, :]
- if weight_name.endswith("w2.weight"):
- param_data[expert_id, :, :] = loaded_weight[:, shard]
- if self.is_quant:
- param.ds_quantize_(param_data)
- def local_moe_fused(self, hidden_states: torch.Tensor) -> torch.Tensor:
- num_tokens, hidden_size = hidden_states.shape
- hidden_states = hidden_states.view(-1, self.hidden_size)
- # router_logits: (num_tokens, n_experts)
- router_logits, _ = self.gate(hidden_states)
- do_normalize = self.top_k > 1
- topk_weights, topk_ids = fused_topk(hidden_states,
- router_logits,
- self.top_k,
- renormalize=do_normalize)
- # topk_ids: (num_tokens, k)
- if self.is_quant:
- if 2 * num_tokens <= self.num_experts:
- # If much fewer tokens than experts, use selective dequantize.
- ws_dequantized = self.ws.ds_selective_dequantize(
- topk_ids.flatten())
- w2s_dequantized = self.w2s.ds_selective_dequantize(
- topk_ids.flatten())
- # We gathered the experts to the tokens so update the mapping.
- topk_ids = torch.arange(
- 0,
- topk_ids.numel(),
- device=topk_ids.device,
- ).reshape(topk_ids.shape)
- else:
- ws_dequantized = self.ws.ds_dequantize()
- w2s_dequantized = self.w2s.ds_dequantize()
- final_hidden_states = fused_experts(
- hidden_states,
- ws_dequantized if self.is_quant else self.ws,
- w2s_dequantized if self.is_quant else self.w2s,
- topk_weights,
- topk_ids,
- inplace=True)
- if self.reduce_results and self.tp_size > 1:
- final_hidden_states = tensor_model_parallel_all_reduce(
- final_hidden_states)
- return final_hidden_states.view(num_tokens, hidden_size)
- def forward(self, hidden_states: torch.Tensor):
- if self.is_moe_layer:
- final_hidden_states = self.local_moe_fused(hidden_states)
- else:
- final_hidden_states = self.mlp(hidden_states)
- return final_hidden_states
- class ArcticAttention(nn.Module):
- def __init__(
- self,
- config: ArcticConfig,
- layer_idx: Optional[int] = None,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.layer_idx = layer_idx
- self.hidden_size = config.hidden_size
- tp_size = get_tensor_model_parallel_world_size()
- self.total_num_heads = config.num_attention_heads
- assert self.total_num_heads % tp_size == 0
- self.num_heads = self.total_num_heads // tp_size
- self.total_num_kv_heads = config.num_key_value_heads
- if self.total_num_kv_heads >= tp_size:
- assert self.total_num_kv_heads % tp_size == 0
- else:
- assert tp_size % self.total_num_kv_heads == 0
- self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
- self.head_dim = self.hidden_size // self.total_num_heads
- self.q_size = self.num_heads * self.head_dim
- self.kv_size = self.num_kv_heads * self.head_dim
- self.max_position_embeddings = config.max_position_embeddings
- self.rope_theta = config.rope_theta
- self.scaling = self.head_dim**-0.5
- self.qkv_proj = QKVParallelLinear(self.hidden_size,
- self.head_dim,
- self.total_num_heads,
- self.total_num_kv_heads,
- bias=False,
- quant_config=quant_config)
- self.o_proj = RowParallelLinear(
- self.total_num_heads * self.head_dim,
- self.hidden_size,
- bias=False,
- reduce_results=True,
- quant_config=quant_config,
- )
- self.rotary_emb = get_rope(
- self.head_dim,
- rotary_dim=self.head_dim,
- max_position=self.max_position_embeddings,
- base=int(self.rope_theta),
- is_neox_style=True,
- )
- self.attn = Attention(self.num_heads,
- self.head_dim,
- self.scaling,
- num_kv_heads=self.num_kv_heads,
- cache_config=cache_config,
- quant_config=quant_config)
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- qkv, _ = self.qkv_proj(hidden_states)
- q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
- q, k = self.rotary_emb(positions, q, k)
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
- output, _ = self.o_proj(attn_output)
- return output
- class ArcticDecoderLayer(nn.Module):
- def __init__(
- self,
- config: ArcticConfig,
- layer_idx: int,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ) -> None:
- super().__init__()
- self.layer_idx = layer_idx
- self.hidden_size = config.hidden_size
- is_moe_layer = (layer_idx + 1) % config.moe_layer_frequency == 0
- self.use_residual = config.use_residual and is_moe_layer
- self.self_attn = ArcticAttention(config,
- layer_idx,
- cache_config,
- quant_config=quant_config)
- self.block_sparse_moe = ArcticMoE(
- config,
- layer_id=layer_idx,
- quant_config=quant_config,
- reduce_results=(not self.use_residual))
- self.input_layernorm = RMSNorm(config.hidden_size,
- eps=config.rms_norm_eps)
- self.post_attention_layernorm = RMSNorm(config.hidden_size,
- eps=config.rms_norm_eps)
- if self.use_residual:
- self.residual_layernorm = RMSNorm(config.hidden_size,
- eps=config.rms_norm_eps)
- self.residual_mlp = ArcticMLP(config,
- layer_id=layer_idx,
- is_residual_mlp=True,
- reduce_results=False)
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- residual_input = hidden_states
- hidden_states = self.input_layernorm(hidden_states)
- hidden_states = self.self_attn(
- positions=positions,
- hidden_states=hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- hidden_states = residual_input + hidden_states
- residual_attn = hidden_states
- if self.use_residual:
- hidden_states = self.residual_layernorm(hidden_states)
- hidden_states = self.residual_mlp(hidden_states)
- residual_mlp = hidden_states
- hidden_states = self.post_attention_layernorm(residual_input)
- hidden_states = self.block_sparse_moe(hidden_states)
- hidden_states = residual_mlp + hidden_states
- hidden_states = tensor_model_parallel_all_reduce(hidden_states)
- hidden_states = residual_attn + hidden_states
- else:
- hidden_states = self.post_attention_layernorm(hidden_states)
- hidden_states = self.block_sparse_moe(hidden_states)
- hidden_states = residual_attn + hidden_states
- return hidden_states
- class ArcticModel(nn.Module):
- def __init__(
- self,
- config: ArcticConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ) -> None:
- super().__init__()
- self.padding_idx = config.pad_token_id
- self.vocab_size = config.vocab_size
- self.embed_tokens = VocabParallelEmbedding(
- self.vocab_size,
- config.hidden_size,
- org_num_embeddings=self.vocab_size)
- self.layers = nn.ModuleList([
- ArcticDecoderLayer(config,
- layer_idx,
- cache_config,
- quant_config=quant_config)
- for layer_idx in range(config.num_hidden_layers)
- ])
- self._attn_implementation = config._attn_implementation
- self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states = self.embed_tokens(input_ids)
- for i in range(len(self.layers)):
- layer = self.layers[i]
- hidden_states = layer(positions, hidden_states, kv_caches[i],
- attn_metadata)
- hidden_states = self.norm(hidden_states)
- return hidden_states
- class ArcticForCausalLM(nn.Module):
- def __init__(self,
- config: ArcticConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- **kwargs) -> None:
- super().__init__()
- self.config = config
- self.model = ArcticModel(config, cache_config, quant_config)
- self.vocab_size = config.vocab_size
- self.lm_head = ParallelLMHead(
- self.vocab_size,
- config.hidden_size,
- )
- self.num_experts = config.num_local_experts
- self.num_experts_per_tok = config.num_experts_per_tok
- self.unpadded_vocab_size = config.vocab_size
- self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
- config.vocab_size)
- self.sampler = Sampler()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states = self.model(input_ids, positions, kv_caches,
- attn_metadata)
- return hidden_states
- def compute_logits(self, hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata) -> torch.Tensor:
- logits = self.logits_processor(self.lm_head.weight, hidden_states,
- sampling_metadata)
- return logits
- def sample(
- self,
- logits: Optional[torch.Tensor],
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- stacked_params_mapping = [
- # (param_name, shard_name, shard_id)
- ("qkv_proj", "q_proj", "q"),
- ("qkv_proj", "k_proj", "k"),
- ("qkv_proj", "v_proj", "v"),
- ]
- mlp_params_mapping = []
- expert_params_mapping = []
- num_layers = self.config.num_hidden_layers
- for layer in range(num_layers):
- mlp_params_mapping.append(
- (f"layers.{layer}.residual_mlp.w13.weight",
- f"layers.{layer}.residual_mlp.w1.weight", 0))
- mlp_params_mapping.append(
- (f"layers.{layer}.residual_mlp.w13.weight",
- f"layers.{layer}.residual_mlp.w3.weight", 1))
- if layer % 2 == 0:
- # MLP layers
- mlp_params_mapping.append(
- (f"layers.{layer}.block_sparse_moe.mlp.w13.weight",
- f"layers.{layer}.block_sparse_moe.mlp.w1.weight", 0))
- mlp_params_mapping.append(
- (f"layers.{layer}.block_sparse_moe.mlp.w13.weight",
- f"layers.{layer}.block_sparse_moe.mlp.w3.weight", 1))
- else:
- # MoE layers
- for expert_id in range(self.config.num_local_experts):
- expert_params_mapping.append(
- ("ws", f"experts.{expert_id}.w1.weight", expert_id))
- expert_params_mapping.append(
- ("w2s", f"experts.{expert_id}.w2.weight", expert_id))
- expert_params_mapping.append(
- ("ws", f"experts.{expert_id}.w3.weight", expert_id))
- params_dict = dict(self.named_parameters())
- logger.info(
- "It will take ~10 minutes loading from the 16-bit weights. "
- "Alternatively, use the prequantized 8-bit weights of arctic "
- "and set load-format to `sharded_state` will accelerate loading.")
- for name, loaded_weight in weights:
- for (param_name, weight_name, shard_id) in stacked_params_mapping:
- if weight_name not in name:
- continue
- name = name.replace(weight_name, param_name)
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = param.weight_loader
- weight_loader(param, loaded_weight, shard_id)
- break
- else:
- for param_name, weight_name, shard_id in mlp_params_mapping:
- if weight_name not in name:
- continue
- name = name.replace(weight_name, param_name)
- param = params_dict[name]
- weight_loader = param.weight_loader
- weight_loader(param, loaded_weight, shard_id)
- break
- else:
- for param_name, weight_name, shard_id \
- in expert_params_mapping:
- if weight_name not in name:
- continue
- name = name.replace(weight_name, param_name)
- param = params_dict[name]
- weight_loader = param.weight_loader
- weight_loader(param,
- loaded_weight,
- weight_name,
- expert_id=shard_id)
- break
- else:
- if name.endswith(".bias") and name not in params_dict:
- continue
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|