123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- import os
- from typing import List, Set, Tuple
- import torch
- from loguru import logger
- from aphrodite.common.config import CacheConfig, ModelConfig, SchedulerConfig
- from aphrodite.common.sequence import ExecuteModelRequest, SamplerOutput
- from aphrodite.common.utils import (get_distributed_init_method, get_ip,
- get_open_port, make_async)
- from aphrodite.executor.executor_base import ExecutorAsyncBase, ExecutorBase
- from aphrodite.lora.request import LoRARequest
- class CPUExecutor(ExecutorBase):
- def _init_executor(self) -> None:
- assert self.device_config.device_type == "cpu"
- assert self.lora_config is None, "cpu backend doesn't support LoRA"
- self.model_config = _verify_and_get_model_config(self.model_config)
- self.cache_config = _verify_and_get_cache_config(self.cache_config)
- self.scheduler_config = _verify_and_get_scheduler_config(
- self.scheduler_config)
- # Instantiate the worker and load the model to CPU.
- self._init_worker()
- def _init_worker(self):
- from aphrodite.task_handler.cpu_worker import CPUWorker
- assert self.parallel_config.world_size == 1, (
- "CPUExecutor only supports single CPU socket currently.")
- distributed_init_method = get_distributed_init_method(
- get_ip(), get_open_port())
- self.driver_worker = CPUWorker(
- model_config=self.model_config,
- parallel_config=self.parallel_config,
- scheduler_config=self.scheduler_config,
- device_config=self.device_config,
- cache_config=self.cache_config,
- load_config=self.load_config,
- local_rank=0,
- rank=0,
- distributed_init_method=distributed_init_method,
- lora_config=self.lora_config,
- vision_language_config=self.vision_language_config,
- kv_cache_dtype=self.cache_config.cache_dtype,
- is_driver_worker=True,
- )
- self.driver_worker.init_device()
- self.driver_worker.load_model()
- def determine_num_available_blocks(self) -> Tuple[int, int]:
- """Determine the number of available KV blocks by invoking the
- underlying worker.
- """
- return self.driver_worker.determine_num_available_blocks()
- def initialize_cache(self, num_gpu_blocks: int,
- num_cpu_blocks: int) -> None:
- """Initialize the KV cache by invoking the underlying worker.
- """
- # NOTE: We log here to avoid multiple logs when number of workers is
- # greater than one. We could log in the engine, but not all executors
- # have GPUs.
- # NOTE: `cpu block` for CPU backend is located on CPU memory but is
- # referred as `gpu block`. Because we want to reuse the existing block
- # management procedure.
- logger.info(f"# CPU blocks: {num_gpu_blocks}")
- self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)
- def execute_model(
- self,
- execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
- output = self.driver_worker.execute_model(execute_model_req)
- return output
- def add_lora(self, lora_request: LoRARequest) -> bool:
- return self.driver_worker.add_lora(lora_request)
- def remove_lora(self, lora_id: int) -> bool:
- return self.driver_worker.remove_lora(lora_id)
- def list_loras(self) -> Set[int]:
- return self.driver_worker.list_loras()
- def check_health(self) -> None:
- # CPUExecutor will always be healthy as long as
- # it's running.
- return
- class CPUExecutorAsync(CPUExecutor, ExecutorAsyncBase):
- async def execute_model_async(
- self,
- execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
- output = await make_async(self.driver_worker.execute_model
- )(execute_model_req=execute_model_req, )
- return output
- async def check_health_async(self) -> None:
- # CPUExecutor will always be healthy as long as
- # it's running.
- return
- def _verify_and_get_model_config(config: ModelConfig) -> ModelConfig:
- if config.dtype == torch.float16:
- logger.warning("float16 is not supported on CPU, casting to bfloat16.")
- config.dtype = torch.bfloat16
- if not config.enforce_eager:
- logger.warning(
- "CUDA graph is not supported on CPU, fallback to the eager "
- "mode.")
- config.enforce_eager = True
- return config
- def _verify_and_get_scheduler_config(
- config: SchedulerConfig) -> SchedulerConfig:
- if config.chunked_prefill_enabled:
- logger.warning("Chunked prefill is not supported on CPU, disable it.")
- config.chunked_prefill_enabled = False
- return config
- def _verify_and_get_cache_config(config: CacheConfig) -> CacheConfig:
- _GB = 1 << 30
- if config.enable_prefix_caching:
- logger.warning("Prefix caching is not supported on CPU, disable it.")
- config.enable_prefix_caching = False
- kv_cache_space_str = os.getenv("APHRODITE_CPU_KVCACHE_SPACE", "0")
- kv_cache_space = int(kv_cache_space_str)
- if kv_cache_space >= 0:
- if kv_cache_space == 0:
- config.cpu_kvcache_space_bytes = 4 * _GB # type: ignore
- logger.warning(
- "Environment variable APHRODITE_CPU_KVCACHE_SPACE (GB) "
- "for CPU backend is not set, using 4 by default.")
- else:
- config.cpu_kvcache_space_bytes = kv_cache_space * _GB # type: ignore
- else:
- raise RuntimeError(
- "Invalid environment variable APHRODITE_CPU_KVCACHE_SPACE"
- f" {kv_cache_space}, expect a positive integer value.")
- return config
|