123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473 |
- import dataclasses
- from typing import Any, Dict, List, Optional, Tuple, Type, cast
- import torch
- import torch.distributed
- from loguru import logger
- from aphrodite.attention.backends.abstract import (AttentionBackend,
- AttentionMetadata)
- from aphrodite.attention.selector import (_Backend,
- get_env_variable_attn_backend,
- get_global_forced_attn_backend,
- global_force_attn_backend)
- from aphrodite.common.config import (CacheConfig, DeviceConfig, LoadConfig,
- LoRAConfig, ModelConfig, ParallelConfig,
- PromptAdapterConfig, SchedulerConfig)
- from aphrodite.common.sampling_params import SamplingParams
- from aphrodite.common.sequence import (IntermediateTensors, PoolerOutput,
- SamplerOutput, SequenceGroupMetadata)
- from aphrodite.common.utils import (STR_NOT_IMPL_ENC_DEC_BACKEND,
- make_tensor_with_pad)
- from aphrodite.inputs import INPUT_REGISTRY, InputRegistry
- from aphrodite.modeling import SamplingMetadata
- from aphrodite.multimodal import MULTIMODAL_REGISTRY, MultiModalRegistry
- from aphrodite.task_handler.model_runner import (
- _PAD_SLOT_ID, GPUModelRunnerBase, ModelInputForGPUBuilder,
- ModelInputForGPUWithSamplingMetadata)
- from aphrodite.task_handler.model_runner_base import (
- _add_attn_metadata_broadcastable_dict,
- _add_sampling_metadata_broadcastable_dict)
- from aphrodite.task_handler.utils import assert_enc_dec_mr_supported_scenario
- @dataclasses.dataclass(frozen=True)
- class EncoderDecoderModelInput(ModelInputForGPUWithSamplingMetadata):
- """
- Used by the EncoderDecoderModelRunner.
- """
- encoder_input_tokens: Optional[torch.Tensor] = None
- encoder_input_positions: Optional[torch.Tensor] = None
- def as_broadcastable_tensor_dict(self) -> Dict[str, Any]:
- tensor_dict = {
- "input_tokens": self.input_tokens,
- "input_positions": self.input_positions,
- "encoder_input_tokens": self.encoder_input_tokens,
- "encoder_input_positions": self.encoder_input_positions,
- "virtual_engine": self.virtual_engine,
- "request_ids_to_seq_ids": self.request_ids_to_seq_ids,
- "finished_requests_ids": self.finished_requests_ids,
- }
- _add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
- _add_sampling_metadata_broadcastable_dict(tensor_dict,
- self.sampling_metadata)
- return tensor_dict
- @classmethod
- def from_broadcasted_tensor_dict(
- cls,
- tensor_dict: Dict[str, Any],
- attn_backend: Optional["AttentionBackend"] = None,
- ) -> "EncoderDecoderModelInput":
- return cast(
- EncoderDecoderModelInput,
- super().from_broadcasted_tensor_dict(tensor_dict, attn_backend))
- class EncoderDecoderModelRunner(GPUModelRunnerBase[EncoderDecoderModelInput]):
- _model_input_cls: Type[EncoderDecoderModelInput] = (
- EncoderDecoderModelInput)
- _builder_cls: Type[ModelInputForGPUBuilder] = (ModelInputForGPUBuilder)
- def __init__(
- self,
- model_config: ModelConfig,
- parallel_config: ParallelConfig,
- scheduler_config: SchedulerConfig,
- device_config: DeviceConfig,
- cache_config: CacheConfig,
- load_config: LoadConfig,
- lora_config: Optional[LoRAConfig],
- kv_cache_dtype: Optional[str] = "auto",
- is_driver_worker: bool = False,
- prompt_adapter_config: Optional[PromptAdapterConfig] = None,
- input_registry: InputRegistry = INPUT_REGISTRY,
- mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
- **kwargs,
- ):
- '''
- EncoderDecoderModelRunner constructor.
- `lora_config` and `prompt_adapter_config` are
- unused (since these features are not yet supported for encoder/decoder
- models) but these arguments are present here for compatibility with
- the base-class constructor.
- '''
- self._maybe_force_supported_attention_backend()
- super().__init__(
- model_config,
- parallel_config,
- scheduler_config,
- device_config,
- cache_config,
- load_config,
- lora_config=None,
- kv_cache_dtype=kv_cache_dtype,
- is_driver_worker=is_driver_worker,
- **kwargs,
- )
- # Crash for unsupported encoder/scenarios
- assert_enc_dec_mr_supported_scenario(self)
- def _maybe_force_supported_attention_backend(self):
- '''
- Force Aphrodite to use the XFormers attention backend,
- which is currently the only supported option.
- '''
- def raise_backend_err():
- # The user has specified an attention backend override
- # which is invalid for encoder/decoder models
- raise NotImplementedError(STR_NOT_IMPL_ENC_DEC_BACKEND)
- maybe_env_var_forced_backend = get_env_variable_attn_backend()
- maybe_global_forced_backend = get_global_forced_attn_backend()
- is_forced_by_global = maybe_global_forced_backend is not None
- is_forced_by_env_var = maybe_env_var_forced_backend is not None
- if not (is_forced_by_global or is_forced_by_env_var):
- # The user has not already specified an attention backend
- # override
- logger.info("EncoderDecoderModelRunner requires "
- "XFormers backend; overriding backend "
- "auto-selection and forcing XFormers.")
- global_force_attn_backend(_Backend.XFORMERS)
- elif is_forced_by_global:
- # Backend override enforced by global variable takes
- # precedence over Aphrodite backend environment variable.
- if maybe_global_forced_backend != _Backend.XFORMERS:
- raise_backend_err()
- elif is_forced_by_env_var:
- # Backend override enforced by Aphrodite backend
- # environment variable
- if maybe_env_var_forced_backend != _Backend.XFORMERS:
- raise_backend_err()
- def _list_to_int32_tensor(
- self,
- _list: List[int],
- ) -> torch.Tensor:
- return torch.tensor(_list, dtype=torch.int32, device=self.device)
- def _list_to_long_tensor(
- self,
- _list: List[int],
- ) -> torch.Tensor:
- return torch.tensor(_list, dtype=torch.long, device=self.device)
- def _empty_int32_tensor(self) -> torch.Tensor:
- return self._list_to_int32_tensor([])
- def _empty_long_tensor(self) -> torch.Tensor:
- return self._list_to_long_tensor([])
- @torch.inference_mode()
- def execute_model(
- self,
- model_input: EncoderDecoderModelInput,
- kv_caches: List[torch.Tensor],
- intermediate_tensors: Optional[IntermediateTensors] = None,
- num_steps: int = 1,
- ) -> Optional[List[PoolerOutput]]:
- if num_steps > 1:
- raise ValueError("num_steps > 1 is not supported in "
- "EncoderDecoderModelRunner")
- model_executable = self.model
- seqlen_agnostic_kwargs = {
- "finished_requests_ids": model_input.finished_requests_ids,
- "request_ids_to_seq_ids": model_input.request_ids_to_seq_ids,
- } if self.has_seqlen_agnostic else {}
- hidden_or_intermediate_states = model_executable(
- input_ids=model_input.input_tokens,
- positions=model_input.input_positions,
- encoder_input_ids=model_input.encoder_input_tokens,
- encoder_positions=model_input.encoder_input_positions,
- kv_caches=kv_caches,
- attn_metadata=model_input.attn_metadata,
- intermediate_tensors=intermediate_tensors,
- **seqlen_agnostic_kwargs)
- logits = self.model.compute_logits(hidden_or_intermediate_states,
- model_input.sampling_metadata)
- if not self.is_driver_worker:
- return []
- # Sample the next token.
- output: SamplerOutput = self.model.sample(
- logits=logits,
- sampling_metadata=model_input.sampling_metadata,
- )
- return [output]
- def make_model_input_from_broadcasted_tensor_dict(
- self, tensor_dict: Dict[str, Any]) -> EncoderDecoderModelInput:
- return EncoderDecoderModelInput.from_broadcasted_tensor_dict(
- tensor_dict,
- attn_backend=self.attn_backend,
- )
- def prepare_model_input(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- virtual_engine: int = 0,
- finished_requests_ids: Optional[List[str]] = None
- ) -> EncoderDecoderModelInput:
- """Prepare the model input based on a given sequence group, including
- metadata for the sampling step.
- Since chunked prefill is not supported for encoder/decoder models,
- `input_tokens` is assumed to be either entirely prefill tokens or
- entirely decode tokens.
- """
- model_input = self._prepare_model_input_tensors(
- seq_group_metadata_list, finished_requests_ids)
- (
- attn_metadata,
- encoder_input_tokens_tensor,
- encoder_input_positions_tensor,
- ) = (self._prepare_encoder_model_input_tensors(seq_group_metadata_list,
- model_input))
- # Inject attn_metadata encoder/cross-attention fields &
- # encoder input tokens/positions into model_input.
- # Frozen dataclass fields cannot be modified, so use
- # dataclasses.replace to construct a new model input
- # instance.
- model_input = dataclasses.replace(
- model_input,
- attn_metadata=attn_metadata,
- encoder_input_tokens=encoder_input_tokens_tensor,
- encoder_input_positions=encoder_input_positions_tensor,
- )
- sampling_metadata = SamplingMetadata.prepare(seq_group_metadata_list,
- model_input.seq_lens,
- model_input.query_lens,
- self.device,
- self.pin_memory)
- is_prompt = (seq_group_metadata_list[0].is_prompt
- if seq_group_metadata_list else None)
- return dataclasses.replace(model_input,
- sampling_metadata=sampling_metadata,
- is_prompt=is_prompt,
- virtual_engine=virtual_engine)
- @torch.inference_mode()
- def profile_run(self) -> None:
- # Enable top-k sampling to reflect the accurate memory usage.
- sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
- max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
- max_num_seqs = self.scheduler_config.max_num_seqs
- # Profile memory usage with max_num_sequences sequences and the total
- # number of tokens equal to max_num_batched_tokens.
- seqs: List[SequenceGroupMetadata] = []
- max_mm_tokens = self.mm_registry.get_max_multimodal_tokens(
- self.model_config)
- if max_mm_tokens > 0:
- raise NotImplementedError(
- "Multi-modal encoder-decoder models are not supported yet")
- batch_size = 0
- for group_id in range(max_num_seqs):
- seq_len = (max_num_batched_tokens // max_num_seqs +
- (group_id < max_num_batched_tokens % max_num_seqs))
- batch_size += seq_len
- seq_data, _ = self.input_registry \
- .dummy_data_for_profiling(self.model_config,
- seq_len,
- self.mm_registry)
- # Having more tokens is over-conservative but otherwise fine
- assert len(seq_data.prompt_token_ids) >= seq_len, (
- f"Expected at least {seq_len} dummy tokens for profiling, "
- f"but got: {len(seq_data.prompt_token_ids)}")
- seq = SequenceGroupMetadata(
- request_id=str(group_id),
- is_prompt=True,
- seq_data={group_id: seq_data},
- sampling_params=sampling_params,
- block_tables=None,
- encoder_seq_data=seq_data,
- cross_block_table=None,
- )
- seqs.append(seq)
- # Run the model with the dummy inputs.
- num_layers = self.model_config.get_num_layers(self.parallel_config)
- kv_caches = [None] * num_layers
- finished_requests_ids = [seq.request_id for seq in seqs]
- model_input = self.prepare_model_input(
- seqs, finished_requests_ids=finished_requests_ids)
- intermediate_tensors = None
- self.execute_model(model_input, kv_caches, intermediate_tensors)
- torch.cuda.synchronize()
- return
- def _prepare_encoder_model_input_tensors(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- model_input: EncoderDecoderModelInput,
- ) -> Tuple[AttentionMetadata, Optional[torch.Tensor],
- Optional[torch.Tensor]]:
- """Helper method to prepare the encoder- and cross-attn-related
- model inputs based on a given sequence group. These additional inputs
- are used to augment an already-computed `EncoderDecoderModelInput`
- data structure which already has decoder-related model inputs
- populated.
- Sets the following attn_metadata fields:
- * `num_encoder_tokens`
- * `encoder_seq_lens`
- * `encoder_seq_lens_tensor`
- * `max_encoder_seq_len`
- * `cross_slot_mapping`
- * `cross_block_tables`
- Constructs a new model inputs data structure, based on
- (1) the existing fields in the `model_inputs` argument,
- and (2) the following additional fields which are
- computed (or in the case of `attn_metadata`, updated)
- by this function:
- * attn_metadata
- * encoder_input_tokens
- * encoder_input_positions
- Arguments:
- * seq_group_metadata_list: list of sequence groups for which to
- compute inputs
- * model_inputs: model inputs data structure with decoder-oriented
- fields already computed.
- Return:
- * Updated model inputs data structure
- """
- if len(seq_group_metadata_list) == 0:
- return (model_input.attn_metadata, None, None)
- # Since we are not supporting chunked prefill either the entire
- # batch is prefill or it is decode
- is_prompt = seq_group_metadata_list[0].is_prompt
- # Build encoder inputs
- encoder_seq_lens: List[int] = []
- if is_prompt:
- # Prefill phase.
- cross_block_tables = self._empty_int32_tensor().view(
- len(seq_group_metadata_list), -1)
- # Extract input tokens/positions, cross-attention slot-mapping,
- # & seq len from each sequence group metadata
- (
- encoder_input_tokens,
- encoder_input_positions,
- cross_slot_mapping,
- ) = (
- [],
- [],
- [],
- )
- for seq_group_metadata in seq_group_metadata_list:
- # Build seq lens
- seq_len = seq_group_metadata.encoder_seq_data.get_len()
- token_ids = seq_group_metadata.encoder_seq_data.get_token_ids()
- encoder_seq_lens.append(seq_len)
- # Build slot mapping
- is_profile_run = (seq_group_metadata.block_tables is None)
- if is_profile_run:
- # During memory profiling, the block tables are not
- # initialized yet. In this case, we just use a dummy
- # slot mapping.
- # In embeddings, the block tables are {seq_id: None}.
- cross_slot_mapping.extend([_PAD_SLOT_ID] * seq_len)
- else:
- for i in range(0, seq_len):
- block_number = seq_group_metadata.cross_block_table[
- i // self.block_size]
- block_offset = i % self.block_size
- slot = block_number * self.block_size + block_offset
- cross_slot_mapping.append(slot)
- # Build encoder input tokens
- encoder_input_tokens.extend(token_ids)
- encoder_input_positions.extend(list(range(0, seq_len)))
- # Convert tokens/positions & cross-attention
- # slot-mapping to encoder input tensors
- encoder_input_tokens_tensor = self._list_to_long_tensor(
- encoder_input_tokens)
- encoder_input_positions_tensor = self._list_to_long_tensor(
- encoder_input_positions)
- cross_slot_mapping_tensor = self._list_to_long_tensor(
- cross_slot_mapping)
- else:
- # Decode phase.
- encoder_input_tokens_tensor = self._empty_long_tensor()
- encoder_input_positions_tensor = self._empty_long_tensor()
- cross_slot_mapping_tensor = self._empty_long_tensor()
- # Extract cross-attention block tables &
- # seq len from each sequence group metadata.
- # Cross-attention block tables are empty
- # during Aphrodite memory profiling.
- cross_block_tables = []
- for seq_group_metadata in seq_group_metadata_list:
- encoder_seq_lens.append(
- seq_group_metadata.encoder_seq_data.get_len())
- cross_block_table = seq_group_metadata.cross_block_table
- cross_block_tables.append([] if (
- cross_block_table is None) else cross_block_table)
- # Convert cross-attention block tables to encoder input tensor
- cross_block_tables = make_tensor_with_pad(
- cross_block_tables,
- max_len=max(
- len(block_table) for block_table in cross_block_tables),
- pad=0,
- dtype=torch.int32,
- device=self.device,
- )
- # Compute encoder sequence lengths & encoder
- # sequence starting offset tensors
- max_encoder_seq_len = max(encoder_seq_lens, default=0)
- encoder_seq_lens_tensor = self._list_to_int32_tensor(encoder_seq_lens)
- encoder_seq_start_loc = torch.zeros(encoder_seq_lens_tensor.shape[0] +
- 1,
- dtype=torch.int32,
- device=self.device)
- torch.cumsum(encoder_seq_lens_tensor,
- dim=0,
- dtype=encoder_seq_start_loc.dtype,
- out=encoder_seq_start_loc[1:])
- # Update attention metadata with encoder-oriented attributes
- attn_metadata = model_input.attn_metadata
- assert attn_metadata is not None
- (
- attn_metadata.num_encoder_tokens,
- attn_metadata.encoder_seq_lens,
- attn_metadata.encoder_seq_lens_tensor,
- attn_metadata.max_encoder_seq_len,
- attn_metadata.cross_slot_mapping,
- attn_metadata.cross_block_tables,
- ) = (
- sum(encoder_seq_lens),
- encoder_seq_lens,
- encoder_seq_lens_tensor,
- max_encoder_seq_len,
- cross_slot_mapping_tensor,
- cross_block_tables,
- )
- return (attn_metadata, encoder_input_tokens_tensor,
- encoder_input_positions_tensor)
|