123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673 |
- # coding=utf-8
- # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
- #
- # Licensed under the TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT
- # (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # https://github.com/Tencent/Tencent-Hunyuan-Large/blob/main/License.docx
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Inference-only HunYuan model compatible with HuggingFace weights."""
- import re
- from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
- import torch
- from torch import nn
- from transformers import PretrainedConfig
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.config import CacheConfig, LoRAConfig
- from aphrodite.common.sequence import IntermediateTensors, SamplerOutput
- from aphrodite.common.utils import is_hip
- from aphrodite.distributed import (get_pp_group,
- get_tensor_model_parallel_rank,
- get_tensor_model_parallel_world_size,
- tensor_model_parallel_all_reduce)
- from aphrodite.modeling.layers.activation import SiluAndMul
- from aphrodite.modeling.layers.fused_moe import FusedMoE
- from aphrodite.modeling.layers.layernorm import RMSNorm
- from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
- MergedColumnParallelLinear,
- QKVParallelLinear,
- ReplicatedLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.rotary_embedding import get_rope
- from aphrodite.modeling.layers.sampler import Sampler
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import (
- default_weight_loader, kv_cache_scales_loader, maybe_remap_kv_scale_name)
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.quantization.base_config import QuantizationConfig
- from aphrodite.quantization.compressed_tensors.utils import (
- get_compressed_tensors_cache_scale)
- from .interfaces import SupportsLoRA
- from .utils import PPMissingLayer, is_pp_missing_parameter, make_layers
- class HunYuanMLP(nn.Module):
- def __init__(
- self,
- hidden_size: int,
- intermediate_size: int,
- hidden_act: str,
- quant_config: Optional[QuantizationConfig] = None,
- bias: bool = False,
- prefix: str = "",
- reduce_results: bool = True,
- ) -> None:
- super().__init__()
- self.gate_up_proj = MergedColumnParallelLinear(
- input_size=hidden_size,
- output_sizes=[intermediate_size] * 2,
- bias=bias,
- quant_config=quant_config,
- prefix=f"{prefix}.gate_up_proj")
- self.down_proj = RowParallelLinear(input_size=intermediate_size,
- output_size=hidden_size,
- bias=bias,
- quant_config=quant_config,
- prefix=f"{prefix}.down_proj",
- reduce_results=reduce_results)
- if hidden_act != "silu":
- raise ValueError(f"Unsupported activation: {hidden_act}. "
- "Only silu is supported for now.")
- self.act_fn = SiluAndMul()
- def forward(self, x):
- gate_up, _ = self.gate_up_proj(x)
- x = self.act_fn(gate_up)
- x, _ = self.down_proj(x)
- return x
- class HunYuanSparseMoeBlock(nn.Module):
- def __init__(
- self,
- config: PretrainedConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.tp_size = get_tensor_model_parallel_world_size()
- if self.tp_size > config.num_experts:
- raise ValueError(
- f"Tensor parallel size {self.tp_size} is greater than "
- f"the number of experts {config.num_experts}.")
- self.experts = FusedMoE(num_experts=config.num_experts,
- top_k=config.moe_topk,
- hidden_size=config.hidden_size,
- intermediate_size=config.intermediate_size,
- reduce_results=False,
- renormalize=True if config.moe_topk>1 else False, # noqa: SIM210, E501
- quant_config=quant_config)
- self.gate = ReplicatedLinear(config.hidden_size,
- config.num_experts,
- bias=False,
- quant_config=None)
- if config.use_mixed_mlp_moe > 0:
- self.shared_mlp = HunYuanMLP(
- hidden_size=config.hidden_size,
- intermediate_size=config.intermediate_size *
- config.num_shared_expert,
- hidden_act=config.hidden_act,
- quant_config=quant_config,
- reduce_results=False,
- )
- else:
- self.shared_mlp = None
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- # NOTE: hidden_states can have either 1D or 2D shape.
- orig_shape = hidden_states.shape
- hidden_dim = hidden_states.shape[-1]
- hidden_states = hidden_states.view(-1, hidden_dim)
- shared_output = None
- if self.shared_mlp is not None:
- shared_output = self.shared_mlp(hidden_states)
- # router_logits: (num_tokens, n_experts)
- router_logits, _ = self.gate(hidden_states)
- final_hidden_states = self.experts(hidden_states=hidden_states,
- router_logits=router_logits)
- if shared_output is not None:
- final_hidden_states = final_hidden_states + shared_output
- if self.tp_size > 1:
- final_hidden_states = tensor_model_parallel_all_reduce(
- final_hidden_states)
- return final_hidden_states.view(orig_shape)
- class HunYuanAttention(nn.Module):
- def __init__(
- self,
- config: PretrainedConfig,
- hidden_size: int,
- num_heads: int,
- num_kv_heads: int,
- rope_theta: float = 10000,
- rope_scaling: Optional[Dict[str, Any]] = None,
- max_position_embeddings: int = 8192,
- quant_config: Optional[QuantizationConfig] = None,
- bias: bool = False,
- cache_config: Optional[CacheConfig] = None,
- prefix: str = "",
- attention_type: str = "self",
- ) -> None:
- super().__init__()
- self.hidden_size = hidden_size
- tp_size = get_tensor_model_parallel_world_size()
- self.total_num_heads = num_heads
- assert self.total_num_heads % tp_size == 0
- self.num_heads = self.total_num_heads // tp_size
- self.total_num_kv_heads = num_kv_heads
- if self.total_num_kv_heads >= tp_size:
- # Number of KV heads is greater than TP size, so we partition
- # the KV heads across multiple tensor parallel GPUs.
- assert self.total_num_kv_heads % tp_size == 0
- else:
- # Number of KV heads is less than TP size, so we replicate
- # the KV heads across multiple tensor parallel GPUs.
- assert tp_size % self.total_num_kv_heads == 0
- self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
- # MistralConfig has an optional head_dim introduced by Mistral-Nemo
- self.head_dim = getattr(config, "head_dim",
- self.hidden_size // self.total_num_heads)
- self.q_size = self.num_heads * self.head_dim
- self.kv_size = self.num_kv_heads * self.head_dim
- self.scaling = self.head_dim**-0.5
- self.rope_theta = rope_theta
- self.max_position_embeddings = max_position_embeddings
- self.use_qk_norm = config.use_qk_norm
- self.attention_type = attention_type
- if attention_type == "self":
- self.qkv_proj = QKVParallelLinear(
- hidden_size=hidden_size,
- head_size=self.head_dim,
- total_num_heads=self.total_num_heads,
- total_num_kv_heads=self.total_num_kv_heads,
- bias=bias,
- quant_config=quant_config,
- prefix=f"{prefix}.qkv_proj",
- )
- elif attention_type == "cross":
- self.q_proj = ColumnParallelLinear(
- hidden_size,
- hidden_size,
- bias=bias,
- quant_config=quant_config,
- prefix=f"{prefix}.q_proj",
- )
- else:
- raise RuntimeError("Not support attnention type")
- self.o_proj = RowParallelLinear(
- input_size=self.total_num_heads * self.head_dim,
- output_size=hidden_size,
- bias=bias,
- quant_config=quant_config,
- prefix=f"{prefix}.o_proj",
- )
- is_neox_style = True
- if quant_config is not None and quant_config.get_name() == "gguf":
- is_neox_style = False
- self.rotary_emb = get_rope(
- self.head_dim,
- rotary_dim=self.head_dim,
- max_position=max_position_embeddings,
- base=rope_theta,
- rope_scaling=rope_scaling,
- is_neox_style=is_neox_style,
- )
- self.attn = Attention(self.num_heads,
- self.head_dim,
- self.scaling,
- num_kv_heads=self.num_kv_heads,
- cache_config=cache_config,
- quant_config=quant_config)
- if self.use_qk_norm:
- self.query_layernorm = RMSNorm(self.head_dim,
- eps=config.rms_norm_eps)
- self.key_layernorm = RMSNorm(self.head_dim,
- eps=config.rms_norm_eps)
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- kv_states: Optional[Tuple[torch.Tensor]] = None,
- ) -> torch.Tensor:
- if self.attention_type == "self":
- qkv, _ = self.qkv_proj(hidden_states)
- q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size],
- dim=-1)
- q, k = self.rotary_emb(positions, q, k)
- ori_k = k
- if self.use_qk_norm:
- q = self.query_layernorm(q.view(-1, self.num_heads,
- self.head_dim).contiguous())
- k = self.key_layernorm(k.view(-1, self.num_kv_heads,
- self.head_dim).contiguous())
- elif self.attention_type == "cross":
- assert kv_states is not None
- ori_k, v = kv_states # use last layer kv,
- k = ori_k
- q, _ = self.q_proj(hidden_states)
- k_tmp = torch.empty_like(k) # Todo: reduant rotary embedding
- q, _ = self.rotary_emb(positions, q, k_tmp)
- if self.use_qk_norm:
- q = self.query_layernorm(q.view(-1, self.num_heads,
- self.head_dim).contiguous())
- k = self.key_layernorm(k.view(-1, self.num_kv_heads,
- self.head_dim).contiguous())
- else:
- raise RuntimeError("Not support attnention type")
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
- output, _ = self.o_proj(attn_output)
- return output, (ori_k, v)
- class HunYuanDecoderLayer(nn.Module):
- def __init__(
- self,
- config: PretrainedConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- prefix: str = "",
- layer_id: int = -1,
- ) -> None:
- super().__init__()
- self.hidden_size = config.hidden_size
- rope_theta = getattr(config, "rope_theta", 10000)
- rope_scaling = getattr(config, "rope_scaling", None)
- if rope_scaling is not None and getattr(
- config, "original_max_position_embeddings", None):
- rope_scaling["original_max_position_embeddings"] = (
- config.original_max_position_embeddings)
- max_position_embeddings = getattr(config, "max_position_embeddings",
- 8192)
- # Support abacusai/Smaug-72B-v0.1 with attention_bias
- # Support internlm/internlm-7b with bias
- attention_bias = getattr(config, "attention_bias", False) or getattr(
- config, "bias", False)
- cla_factor = getattr(config, "cla_share_factor", 1)
- attention_type = "cross" \
- if layer_id >= 0 and layer_id % cla_factor != 0 else "self"
- self.self_attn = HunYuanAttention(
- config=config,
- hidden_size=self.hidden_size,
- num_heads=config.num_attention_heads,
- num_kv_heads=getattr(config, "num_key_value_heads",
- config.num_attention_heads),
- rope_theta=rope_theta,
- rope_scaling=rope_scaling,
- max_position_embeddings=max_position_embeddings,
- quant_config=quant_config,
- bias=attention_bias,
- cache_config=cache_config,
- prefix=f"{prefix}.self_attn",
- attention_type=attention_type,
- )
- if getattr(config, "num_experts", None):
- self.mlp = HunYuanSparseMoeBlock(config=config,
- quant_config=quant_config)
- else:
- self.mlp = HunYuanMLP(
- hidden_size=self.hidden_size,
- intermediate_size=config.intermediate_size,
- hidden_act=config.hidden_act,
- quant_config=quant_config,
- bias=getattr(config, "mlp_bias", False),
- prefix=f"{prefix}.mlp",
- )
- self.input_layernorm = RMSNorm(config.hidden_size,
- eps=config.rms_norm_eps)
- self.post_attention_layernorm = RMSNorm(config.hidden_size,
- eps=config.rms_norm_eps)
- def forward(
- self,
- positions: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- residual: Optional[torch.Tensor],
- kv_states: Optional[Tuple[torch.Tensor]] = None,
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- # Self Attention
- if residual is None:
- residual = hidden_states
- hidden_states = self.input_layernorm(hidden_states)
- else:
- hidden_states, residual = self.input_layernorm(
- hidden_states, residual)
- hidden_states, ori_kv_states = self.self_attn(
- positions=positions,
- hidden_states=hidden_states,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- kv_states=kv_states,
- )
- # Fully Connected
- hidden_states, residual = self.post_attention_layernorm(
- hidden_states, residual)
- hidden_states = self.mlp(hidden_states)
- return hidden_states, residual, ori_kv_states
- class HunYuanModel(nn.Module):
- def __init__(
- self,
- config: PretrainedConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- lora_config: Optional[LoRAConfig] = None,
- prefix: str = "",
- ) -> None:
- super().__init__()
- self.config = config
- self.padding_idx = config.pad_token_id
- lora_vocab = (lora_config.lora_extra_vocab_size *
- (lora_config.max_loras or 1)) if lora_config else 0
- self.vocab_size = config.vocab_size + lora_vocab
- self.org_vocab_size = config.vocab_size
- if get_pp_group().is_first_rank or (config.tie_word_embeddings
- and get_pp_group().is_last_rank):
- self.embed_tokens = VocabParallelEmbedding(
- self.vocab_size,
- config.hidden_size,
- org_num_embeddings=config.vocab_size,
- quant_config=quant_config,
- )
- else:
- self.embed_tokens = PPMissingLayer()
- self.start_layer, self.end_layer, self.layers = make_layers(
- config.num_hidden_layers,
- lambda prefix: HunYuanDecoderLayer(config=config,
- layer_id=int(
- prefix.split(".")[-1]),
- cache_config=cache_config,
- quant_config=quant_config,
- prefix=prefix),
- prefix=f"{prefix}.layers")
- if get_pp_group().is_last_rank:
- self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
- else:
- self.norm = PPMissingLayer()
- def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
- return self.embed_tokens(input_ids)
- def forward(
- self,
- input_ids: Optional[torch.Tensor],
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors],
- inputs_embeds: Optional[torch.Tensor] = None,
- ) -> Union[torch.Tensor, IntermediateTensors]:
- if get_pp_group().is_first_rank:
- if inputs_embeds is not None:
- hidden_states = inputs_embeds
- else:
- hidden_states = self.get_input_embeddings(input_ids)
- residual = None
- else:
- assert intermediate_tensors is not None
- hidden_states = intermediate_tensors["hidden_states"]
- residual = intermediate_tensors["residual"]
- cla_factor = getattr(self.config, "cla_share_factor", 1)
- prev_kv_states = None
- for i in range(self.start_layer, self.end_layer):
- layer = self.layers[i]
- hidden_states, residual, kv_states = layer(
- positions,
- hidden_states,
- kv_caches[i - self.start_layer],
- # kv_caches[(i - self.start_layer) // cla_factor],
- attn_metadata,
- residual,
- prev_kv_states,
- )
- if (i - self.start_layer) % cla_factor == 0:
- prev_kv_states = kv_states
- else:
- prev_kv_states = None
- if not get_pp_group().is_last_rank:
- return IntermediateTensors({
- "hidden_states": hidden_states,
- "residual": residual
- })
- hidden_states, _ = self.norm(hidden_states, residual)
- return hidden_states
- class HunYuanForCausalLM(nn.Module, SupportsLoRA):
- packed_modules_mapping = {
- "qkv_proj": [
- "q_proj",
- "k_proj",
- "v_proj",
- ],
- "gate_up_proj": [
- "gate_proj",
- "up_proj",
- ],
- }
- # LoRA specific attributes
- supported_lora_modules = [
- "qkv_proj", "o_proj", "gate_up_proj", "down_proj", "embed_tokens",
- "lm_head"
- ]
- embedding_modules = {
- "embed_tokens": "input_embeddings",
- "lm_head": "output_embeddings",
- }
- embedding_padding_modules = ["lm_head"]
- bitsandbytes_stacked_params_mapping = {
- # shard_name, weight_name, index
- "q_proj": ("qkv_proj", 0),
- "k_proj": ("qkv_proj", 1),
- "v_proj": ("qkv_proj", 2),
- "gate_proj": ("gate_up_proj", 0),
- "up_proj": ("gate_up_proj", 1),
- }
- def __init__(
- self,
- config: PretrainedConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- lora_config: Optional[LoRAConfig] = None,
- ) -> None:
- super().__init__()
- self.config = config
- self.lora_config = lora_config
- self.model = HunYuanModel(config,
- cache_config,
- quant_config,
- lora_config=lora_config,
- prefix="model")
- if get_pp_group().is_last_rank:
- self.unpadded_vocab_size = config.vocab_size
- if lora_config:
- self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
- self.lm_head = ParallelLMHead(
- self.unpadded_vocab_size,
- config.hidden_size,
- org_num_embeddings=config.vocab_size,
- padding_size=DEFAULT_VOCAB_PADDING_SIZE
- # We need bigger padding if using lora for kernel
- # compatibility
- if not lora_config else lora_config.lora_vocab_padding_size,
- quant_config=quant_config,
- )
- if config.tie_word_embeddings:
- self.lm_head.weight = self.model.embed_tokens.weight
- logit_scale = getattr(config, "logit_scale", 1.0)
- self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
- config.vocab_size,
- logit_scale)
- self.sampler = Sampler()
- else:
- self.lm_head = PPMissingLayer()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- ) -> Union[torch.Tensor, IntermediateTensors]:
- model_output = self.model(input_ids, positions, kv_caches,
- attn_metadata, intermediate_tensors)
- return model_output
- def compute_logits(
- self,
- hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[torch.Tensor]:
- logits = self.logits_processor(self.lm_head, hidden_states,
- sampling_metadata)
- return logits
- def sample(
- self,
- logits: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def make_empty_intermediate_tensors(
- self, batch_size: int, dtype: torch.dtype,
- device: torch.device) -> IntermediateTensors:
- return IntermediateTensors({
- "hidden_states":
- torch.zeros((batch_size, self.config.hidden_size),
- dtype=dtype,
- device=device),
- "residual":
- torch.zeros((batch_size, self.config.hidden_size),
- dtype=dtype,
- device=device),
- })
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- cla_factor = getattr(self.config, "cla_share_factor", 1)
- stacked_params_mapping = [
- # (param_name, shard_name, shard_id)
- (".qkv_proj", ".q_proj", "q"),
- (".qkv_proj", ".k_proj", "k"),
- (".qkv_proj", ".v_proj", "v"),
- (".gate_up_proj", ".gate_proj", 0),
- (".gate_up_proj", ".up_proj", 1),
- ]
- if getattr(self.config, "num_experts", None):
- # Params for weights, fp8 weight scales, fp8 activation scales
- # (param_name, weight_name, expert_id, shard_id)
- expert_params_mapping = FusedMoE.make_expert_params_mapping(
- ckpt_gate_proj_name="gate_proj",
- ckpt_down_proj_name="down_proj",
- ckpt_up_proj_name="up_proj",
- num_experts=self.config.num_experts)
- else:
- expert_params_mapping = {}
- params_dict = dict(self.named_parameters())
- for name, loaded_weight in weights:
- if "rotary_emb.inv_freq" in name:
- continue
- if ("rotary_emb.cos_cached" in name
- or "rotary_emb.sin_cached" in name):
- # Models trained using ColossalAI may include these tensors in
- # the checkpoint. Skip them.
- continue
- # With tie_word_embeddings, we can skip lm_head.weight
- # The weight might appear unnecessarily in the files if the model is
- # processed with quantization, LoRA, fine-tuning, etc.
- if self.config.tie_word_embeddings and "lm_head.weight" in name:
- continue
- if scale_name := get_compressed_tensors_cache_scale(name):
- # Loading kv cache scales for compressed-tensors quantization
- param = params_dict[scale_name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- loaded_weight = loaded_weight[0]
- weight_loader(param, loaded_weight)
- continue
- for (param_name, weight_name, shard_id) in stacked_params_mapping:
- if weight_name not in name:
- continue
- if "mlp.experts" in name:
- continue
- # cross layer only have q_proj, skip qkv pack
- if weight_name == ".q_proj":
- match = re.search(r'layers\.\d+', name)
- if match:
- layer_id = int(match.group(0).split('.')[-1])
- if cla_factor > 1 and layer_id % cla_factor != 0:
- continue
- name = name.replace(weight_name, param_name)
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- if is_pp_missing_parameter(name, self):
- continue
- param = params_dict[name]
- weight_loader = param.weight_loader
- weight_loader(param, loaded_weight, shard_id)
- break
- else:
- # Skip loading extra bias for GPTQ models.
- if name.endswith(".bias") and name not in params_dict:
- continue
- for mapping in expert_params_mapping:
- param_name, weight_name, expert_id, shard_id = mapping
- if weight_name not in name:
- continue
- name = name.replace(weight_name, param_name)
- # Skip layers on other devices.
- if is_pp_missing_parameter(name, self):
- continue
- param = params_dict[name]
- weight_loader = param.weight_loader
- weight_loader(param,
- loaded_weight,
- name,
- shard_id=shard_id,
- expert_id=expert_id)
- break
- else:
- # Remapping the name of FP8 kv-scale.
- name = maybe_remap_kv_scale_name(name, params_dict)
- if name is None:
- continue
- if is_pp_missing_parameter(name, self):
- continue
- if "mlp.gate.wg." in name:
- name = name.replace("wg.", "")
- param = params_dict[name]
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
- # If this function is called, it should always initialize KV cache scale
- # factors (or else raise an exception). Thus, handled exceptions should
- # make sure to leave KV cache scale factors in a known good (dummy) state
- def load_kv_cache_scales(self, quantization_param_path: str) -> None:
- tp_size = get_tensor_model_parallel_world_size()
- tp_rank = get_tensor_model_parallel_rank()
- for layer_idx, scaling_factor in kv_cache_scales_loader(
- quantization_param_path, tp_rank, tp_size,
- self.config.num_hidden_layers,
- self.config.__class__.model_type):
- if not isinstance(self.model.layers[layer_idx], nn.Identity):
- layer_self_attn = self.model.layers[layer_idx].self_attn
- if is_hip():
- # The scaling factor convention we are assuming is
- # quantized_value * scaling_factor ~= true_value
- # which is consistent with the practice of setting
- # scaling_factor = tensor_amax / FPtype_max
- scaling_factor *= 2
- if hasattr(layer_self_attn, "kv_scale"):
- layer_self_attn.attn._kv_scale = scaling_factor
- else:
- raise RuntimeError("Self attention has no KV cache scaling "
- "factor attribute!")
|