marlin.py 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246
  1. from typing import Any, Dict, List, Optional
  2. import torch
  3. from loguru import logger
  4. from torch.nn.parameter import Parameter
  5. from aphrodite import _custom_ops as ops
  6. from aphrodite.modeling.layers.linear import LinearBase, LinearMethodBase
  7. from aphrodite.modeling.utils import set_weight_attrs
  8. from aphrodite.quantization.base_config import QuantizationConfig
  9. class MarlinConfig(QuantizationConfig):
  10. """Config class for Marlin.
  11. Reference: https://github.com/IST-DASLab/marlin/tree/master
  12. """
  13. def __init__(
  14. self,
  15. group_size: int,
  16. ) -> None:
  17. # Group size for the quantization.
  18. self.group_size = group_size
  19. if self.group_size != 128 and self.group_size != -1:
  20. raise ValueError(
  21. "Currently, only group size 128 and -1 (channelwise) "
  22. "is supported for Marlin, but got group_size of "
  23. f"{self.group_size}")
  24. # 4 Bits packed into 32 bit datatype.
  25. self.pack_factor = 32 // 4
  26. # Tile size used by marlin kernels.
  27. self.tile_size = 16
  28. # Min out_features dim
  29. self.min_n_threads = 64
  30. # Min in_features dim
  31. self.min_k_threads = 128
  32. # Max parallel problems to solve at once (improves large
  33. # batch performance)
  34. self.max_parallel = 16
  35. # Permutation length used by the marlin kernels.
  36. self.perm_len = 1024
  37. def __repr__(self) -> str:
  38. return f"MarlinConfig(group_size={self.group_size})"
  39. @classmethod
  40. def get_name(cls) -> str:
  41. return "marlin"
  42. @classmethod
  43. def get_supported_act_dtypes(cls) -> List[torch.dtype]:
  44. return [torch.half]
  45. @classmethod
  46. # Need to figure it out
  47. def get_min_capability(cls) -> int:
  48. return 80
  49. @classmethod
  50. def get_config_filenames(cls) -> List[str]:
  51. return ["quantize_config.json"]
  52. @classmethod
  53. def from_config(cls, config: Dict[str, Any]) -> "MarlinConfig":
  54. group_size = cls.get_from_keys(config, ["group_size"])
  55. return cls(group_size)
  56. @classmethod
  57. def override_quantization_method(cls, hf_quant_cfg,
  58. user_quant) -> Optional[str]:
  59. # compat: autogptq >=0.8.0 use checkpoint_format: str
  60. # compat: autogptq <=0.7.1 is_marlin_format: bool
  61. is_marlin_format = (hf_quant_cfg.get("checkpoint_format") == "marlin"
  62. or hf_quant_cfg.get("is_marlin_format", False))
  63. is_valid_user_quant = (user_quant is None or user_quant == "gptq"
  64. or user_quant == "marlin")
  65. if is_marlin_format and is_valid_user_quant:
  66. msg = ("The model is serialized in {} format. Using {} kernel.".
  67. format(cls.get_name(), cls.get_name()))
  68. logger.info(msg)
  69. return cls.get_name()
  70. return None
  71. def get_quant_method(
  72. self, layer: torch.nn.Module) -> Optional["MarlinLinearMethod"]:
  73. if isinstance(layer, LinearBase):
  74. return MarlinLinearMethod(self)
  75. return None
  76. def get_scaled_act_names(self) -> List[str]:
  77. return []
  78. class MarlinLinearMethod(LinearMethodBase):
  79. """Linear method for Marlin.
  80. Args:
  81. quant_config: The Marlin quantization config.
  82. """
  83. def __init__(self, quant_config: MarlinConfig):
  84. self.quant_config = quant_config
  85. def create_weights(
  86. self,
  87. layer: torch.nn.Module,
  88. input_size_per_partition: int,
  89. output_partition_sizes: List[int],
  90. input_size: int,
  91. output_size: int,
  92. params_dtype: torch.dtype,
  93. **extra_weight_attrs,
  94. ):
  95. del output_size # Unused.
  96. if params_dtype != torch.float16:
  97. raise ValueError(
  98. f"The params dtype must be float16, but got {params_dtype}")
  99. # Validate output_size_per_partition
  100. output_size_per_partition = sum(output_partition_sizes)
  101. if output_size_per_partition % self.quant_config.min_n_threads != 0:
  102. raise ValueError(
  103. f"Weight output_size_per_partition = "
  104. f"{output_size_per_partition} is not divisible by "
  105. f"min_n_threads = {self.quant_config.min_n_threads}.")
  106. if output_size_per_partition % self.quant_config.pack_factor != 0:
  107. raise ValueError(
  108. f"Weight output_size_per_partition = "
  109. f"{output_size_per_partition} is not divisible by "
  110. f"pack_factor = {self.quant_config.pack_factor}.")
  111. # Validate input_size_per_partition
  112. if input_size_per_partition % self.quant_config.min_k_threads != 0:
  113. raise ValueError(
  114. f"Weight input_size_per_partition = "
  115. f"{input_size_per_partition} is not divisible by "
  116. f"min_k_threads = {self.quant_config.min_k_threads}.")
  117. if (self.quant_config.group_size != -1 and
  118. input_size_per_partition % self.quant_config.group_size != 0):
  119. raise ValueError(f"Weight input_size_per_partition = "
  120. f"{input_size_per_partition} is not divisible by "
  121. f"group_size = {self.quant_config.group_size}.")
  122. # Check that we have at least 4 tiles horizontally in the shard
  123. num_tiles_per_perm = self.quant_config.perm_len // (
  124. self.quant_config.tile_size**2)
  125. if output_size_per_partition % num_tiles_per_perm != 0:
  126. raise ValueError(
  127. "Each permutation group must reside on the same gpu")
  128. # Quantized 4Bit weights packed into Int32.
  129. qweight = Parameter(
  130. torch.empty(
  131. input_size_per_partition // self.quant_config.tile_size,
  132. output_size_per_partition * self.quant_config.tile_size //
  133. self.quant_config.pack_factor,
  134. device="cuda",
  135. dtype=torch.int32,
  136. ),
  137. requires_grad=False,
  138. )
  139. set_weight_attrs(
  140. qweight,
  141. {
  142. "input_dim": 0,
  143. "output_dim": 1,
  144. "packed_dim": 1,
  145. "pack_factor": self.quant_config.pack_factor,
  146. "marlin_tile_size": self.quant_config.tile_size,
  147. },
  148. )
  149. # Determine if channelwise or not
  150. input_groups = (1 if self.quant_config.group_size == -1 else
  151. input_size_per_partition //
  152. self.quant_config.group_size)
  153. scales = Parameter(
  154. torch.empty(
  155. input_groups,
  156. output_size_per_partition,
  157. device="cuda",
  158. dtype=params_dtype,
  159. ),
  160. requires_grad=False,
  161. )
  162. set_weight_attrs(
  163. scales,
  164. {
  165. "input_dim": None if input_groups == 1 else 0,
  166. "output_dim": 1,
  167. },
  168. )
  169. # Allocate workspace (Used for internal locking mechanism)
  170. max_workspace_size = (
  171. output_size_per_partition //
  172. self.quant_config.min_n_threads) * self.quant_config.max_parallel
  173. workspace = Parameter(torch.zeros(max_workspace_size,
  174. device="cuda",
  175. dtype=torch.int),
  176. requires_grad=False)
  177. layer.register_parameter("B", qweight)
  178. set_weight_attrs(qweight, extra_weight_attrs)
  179. layer.register_parameter("s", scales)
  180. set_weight_attrs(scales, extra_weight_attrs)
  181. layer.register_parameter("workspace", workspace)
  182. set_weight_attrs(workspace, extra_weight_attrs)
  183. def apply(
  184. self,
  185. layer: torch.nn.Module,
  186. x: torch.Tensor,
  187. bias: Optional[torch.Tensor] = None,
  188. ) -> torch.Tensor:
  189. qweight = layer.B
  190. scales = layer.s
  191. workspace = layer.workspace
  192. x_2d = x.view(-1, x.shape[-1])
  193. size_m = x_2d.shape[0]
  194. size_k = x_2d.shape[1]
  195. size_n = scales.shape[1]
  196. output_2d = ops.marlin_gemm(x_2d, qweight, scales, workspace, size_m,
  197. size_n, size_k)
  198. output = output_2d.view(x.shape[:-1] + (output_2d.shape[1], ))
  199. if bias is not None:
  200. output.add_(bias) # In-place add
  201. return output