123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 |
- import time
- from dataclasses import dataclass
- from typing import TYPE_CHECKING, Dict, List, Optional, Protocol
- import numpy as np
- from prometheus_client import (REGISTRY, Counter, Gauge, Histogram, Info,
- disable_created_metrics)
- from loguru import logger
- if TYPE_CHECKING:
- from aphrodite.spec_decode.metrics import SpecDecodeWorkerMetrics
- disable_created_metrics()
- # The begin-* and end* here are used by the documentation generator
- # to extract the metrics definitions.
- # begin-metrics-definitions
- class Metrics:
- def __init__(self, labelnames: List[str]):
- # Unregister any existing Aphrodite collectors
- for collector in list(REGISTRY._collector_to_names):
- if hasattr(collector, "_name") and "aphrodite" in collector._name:
- REGISTRY.unregister(collector)
- # Config Information
- self.info_cache_config = Info(
- name='aphrodite:cache_config',
- documentation='information of cache_config')
- # System stats
- self.gauge_scheduler_running = Gauge(
- name="aphrodite:num_requests_running",
- documentation="Number of requests currently running on GPU.",
- labelnames=labelnames)
- self.gauge_scheduler_swapped = Gauge(
- name="aphrodite:num_requests_swapped",
- documentation="Number of requests swapped to CPU.",
- labelnames=labelnames)
- self.gauge_scheduler_waiting = Gauge(
- name="aphrodite:num_requests_waiting",
- documentation="Number of requests waiting to be processed.",
- labelnames=labelnames)
- self.gauge_gpu_cache_usage = Gauge(
- name="aphrodite:gpu_cache_usage_perc",
- documentation="GPU KV-cache usage. 1 means 100 percent usage.",
- labelnames=labelnames)
- self.gauge_cpu_cache_usage = Gauge(
- name="aphrodite:cpu_cache_usage_perc",
- documentation="CPU KV-cache usage. 1 means 100 percent usage.",
- labelnames=labelnames)
- # Raw stats from last model iteration
- self.counter_prompt_tokens = Counter(
- name="aphrodite:prompt_tokens_total",
- documentation="Number of prefill tokens processed.",
- labelnames=labelnames)
- self.counter_generation_tokens = Counter(
- name="aphrodite:generation_tokens_total",
- documentation="Number of generation tokens processed.",
- labelnames=labelnames)
- self.histogram_time_to_first_token = Histogram(
- name="aphrodite:time_to_first_token_seconds",
- documentation="Histogram of time to first token in seconds.",
- labelnames=labelnames,
- buckets=[
- 0.001, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.25, 0.5,
- 0.75, 1.0, 2.5, 5.0, 7.5, 10.0
- ])
- self.histogram_time_per_output_token = Histogram(
- name="aphrodite:time_per_output_token_seconds",
- documentation="Histogram of time per output token in seconds.",
- labelnames=labelnames,
- buckets=[
- 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75,
- 1.0, 2.5
- ])
- self.histogram_e2e_request_latency = Histogram(
- name="aphrodite:e2e_request_latency_seconds",
- documentation="Histogram of end to end request latency in seconds.",
- labelnames=labelnames,
- buckets=[1.0, 2.5, 5.0, 10.0, 15.0, 20.0, 30.0, 40.0, 50.0, 60.0])
- # Legacy metrics
- self.gauge_avg_prompt_throughput = Gauge(
- name="aphrodite:avg_prompt_throughput_toks_per_s",
- documentation="Average prefill throughput in tokens/s.",
- labelnames=labelnames,
- )
- self.gauge_avg_generation_throughput = Gauge(
- name="aphrodite:avg_generation_throughput_toks_per_s",
- documentation="Average generation throughput in tokens/s.",
- labelnames=labelnames,
- )
- # end-metrics-definitions
- @dataclass
- class Stats:
- """Created by AphroditeEngine for use by StatLogger."""
- now: float
- # System stats.
- num_running: int
- num_waiting: int
- num_swapped: int
- gpu_cache_usage: float
- cpu_cache_usage: float
- # Raw stats from last model iteration.
- num_prompt_tokens: int
- num_generation_tokens: int
- time_to_first_tokens: List[float]
- time_per_output_tokens: List[float]
- time_e2e_requests: List[float]
- spec_decode_metrics: Optional["SpecDecodeWorkerMetrics"] = None
- class SupportsMetricsInfo(Protocol):
- def metrics_info(self) -> Dict[str, str]:
- ...
- class StatLogger:
- """StatLogger is used AphroditeEngine to log to Promethus and Stdout."""
- def __init__(self, local_interval: float, labels: Dict[str, str]) -> None:
- # Metadata for logging locally.
- self.last_local_log = time.time()
- self.local_interval = local_interval
- # Tracked stats over current local logging interval.
- self.num_prompt_tokens: List[int] = []
- self.num_generation_tokens: List[int] = []
- # Prometheus metrics
- self.labels = labels
- self.metrics = Metrics(labelnames=list(labels.keys()))
- def info(self, type: str, obj: SupportsMetricsInfo) -> None:
- if type == "cache_config":
- self.metrics.info_cache_config.info(obj.metrics_info())
- def _get_throughput(self, tracked_stats: List[int], now: float) -> float:
- return float(np.sum(tracked_stats) / (now - self.last_local_log))
- def _local_interval_elapsed(self, now: float) -> bool:
- elapsed_time = now - self.last_local_log
- return elapsed_time > self.local_interval
- def _log_prometheus(self, stats: Stats) -> None:
- # Set system stat gauges.
- self.metrics.gauge_scheduler_running.labels(**self.labels).set(
- stats.num_running)
- self.metrics.gauge_scheduler_swapped.labels(**self.labels).set(
- stats.num_swapped)
- self.metrics.gauge_scheduler_waiting.labels(**self.labels).set(
- stats.num_waiting)
- self.metrics.gauge_gpu_cache_usage.labels(**self.labels).set(
- stats.gpu_cache_usage)
- self.metrics.gauge_cpu_cache_usage.labels(**self.labels).set(
- stats.cpu_cache_usage)
- # Add to token counters.
- self.metrics.counter_prompt_tokens.labels(**self.labels).inc(
- stats.num_prompt_tokens)
- self.metrics.counter_generation_tokens.labels(**self.labels).inc(
- stats.num_generation_tokens)
- # Observe request level latencies in histograms.
- for ttft in stats.time_to_first_tokens:
- self.metrics.histogram_time_to_first_token.labels(
- **self.labels).observe(ttft)
- for tpot in stats.time_per_output_tokens:
- self.metrics.histogram_time_per_output_token.labels(
- **self.labels).observe(tpot)
- for e2e in stats.time_e2e_requests:
- self.metrics.histogram_e2e_request_latency.labels(
- **self.labels).observe(e2e)
- def _log_prometheus_interval(self, prompt_throughput: float,
- generation_throughput: float) -> None:
- # Logs metrics to prometheus that are computed every logging_interval.
- # Support legacy gauge metrics that make throughput calculations on
- # the Aphrodite side. Moving forward, we should use counters like
- # counter_prompt_tokens, counter_generation_tokens
- # Which log raw data and calculate summaries using rate() on the
- # grafana/prometheus side.
- self.metrics.gauge_avg_prompt_throughput.labels(
- **self.labels).set(prompt_throughput)
- self.metrics.gauge_avg_generation_throughput.labels(
- **self.labels).set(generation_throughput)
- def log(self, stats: Stats) -> None:
- """Called by AphroditeEngine.
- Logs to prometheus and tracked stats every iteration.
- Logs to Stdout every self.local_interval seconds."""
- # Log to prometheus.
- self._log_prometheus(stats)
- # Save tracked stats for token counters.
- self.num_prompt_tokens.append(stats.num_prompt_tokens)
- self.num_generation_tokens.append(stats.num_generation_tokens)
- # Log locally every local_interval seconds.
- if self._local_interval_elapsed(stats.now):
- # Compute summary metrics for tracked stats (and log them
- # to promethus if applicable).
- prompt_throughput = self._get_throughput(self.num_prompt_tokens,
- now=stats.now)
- generation_throughput = self._get_throughput(
- self.num_generation_tokens, now=stats.now)
- self._log_prometheus_interval(
- prompt_throughput=prompt_throughput,
- generation_throughput=generation_throughput)
- # Log to stdout.
- logger.info(
- f"Avg prompt throughput: {prompt_throughput:.1f} tokens/s, "
- f"Avg generation throughput: "
- f"{generation_throughput:.1f} tokens/s, "
- f"Running: {stats.num_running} reqs, "
- f"Swapped: {stats.num_swapped} reqs, "
- f"Pending: {stats.num_waiting} reqs, "
- f"GPU KV cache usage: {stats.gpu_cache_usage * 100:.1f}%, "
- f"CPU KV cache usage: {stats.cpu_cache_usage * 100:.1f}%")
- # Reset tracked stats for next interval.
- self.num_prompt_tokens = []
- self.num_generation_tokens = []
- self.last_local_log = stats.now
- if stats.spec_decode_metrics is not None:
- logger.info(
- self._format_spec_decode_metrics_str(
- stats.spec_decode_metrics))
- def _format_spec_decode_metrics_str(
- self, metrics: "SpecDecodeWorkerMetrics") -> str:
- return ("Speculative metrics: "
- f"Draft acceptance rate: {metrics.draft_acceptance_rate:.3f}, "
- f"System efficiency: {metrics.system_efficiency:.3f}, "
- f"Number of speculative tokens: {metrics.num_spec_tokens}, "
- f"Number of accepted tokens: {metrics.accepted_tokens}, "
- f"Number of draft tokens tokens: {metrics.draft_tokens}, "
- f"Number of emitted tokens tokens: {metrics.emitted_tokens}.")
|