123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491 |
- import asyncio
- import time
- from typing import (AsyncGenerator, AsyncIterator, Callable, Dict, List,
- Optional)
- from typing import Sequence as GenericSequence
- from typing import Tuple, Union, cast
- from fastapi import Request
- from aphrodite.common.config import ModelConfig
- from aphrodite.common.outputs import RequestOutput
- from aphrodite.common.sequence import Logprob
- from aphrodite.common.utils import merge_async_iterators, random_uuid
- from aphrodite.endpoints.logger import RequestLogger
- from aphrodite.endpoints.openai.protocol import (
- CompletionLogProbs, CompletionRequest, CompletionResponse,
- CompletionResponseChoice, CompletionResponseStreamChoice,
- CompletionStreamResponse, ErrorResponse, UsageInfo)
- from aphrodite.endpoints.openai.serving_engine import (BaseModelPath,
- LoRAModulePath,
- OpenAIServing,
- PromptAdapterPath)
- from aphrodite.engine.protocol import EngineClient
- from aphrodite.transformers_utils.tokenizer import AnyTokenizer
- TypeTokenIDs = List[int]
- TypeTopLogProbs = List[Optional[Dict[int, float]]]
- TypeCreateLogProbsFn = Callable[
- [TypeTokenIDs, TypeTopLogProbs, Optional[int], int], CompletionLogProbs]
- class OpenAIServingCompletion(OpenAIServing):
- def __init__(
- self,
- engine_client: EngineClient,
- model_config: ModelConfig,
- base_model_paths: List[BaseModelPath],
- *,
- lora_modules: Optional[List[LoRAModulePath]],
- prompt_adapters: Optional[List[PromptAdapterPath]],
- request_logger: Optional[RequestLogger],
- return_tokens_as_token_ids: bool = False,
- ):
- super().__init__(engine_client=engine_client,
- model_config=model_config,
- base_model_paths=base_model_paths,
- lora_modules=lora_modules,
- prompt_adapters=prompt_adapters,
- request_logger=request_logger,
- return_tokens_as_token_ids=return_tokens_as_token_ids)
- async def create_completion(
- self,
- request: CompletionRequest,
- raw_request: Request,
- ) -> Union[AsyncGenerator[str, None], CompletionResponse, ErrorResponse]:
- """Completion API similar to OpenAI's API.
- See https://platform.openai.com/docs/api-reference/completions/create
- for the API specification. This API mimics the OpenAI Completion API.
- NOTE: Currently we do not support the following feature:
- - suffix (the language models we currently support do not support
- suffix)
- """
- error_check_ret = await self._check_model(request)
- if error_check_ret is not None:
- return error_check_ret
- # If the engine is dead, raise the engine's DEAD_ERROR.
- # This is required for the streaming case, where we return a
- # success status before we actually start generating text :).
- if self.engine_client.errored:
- raise self.engine_client.dead_error
- # Return error for unsupported features.
- if request.suffix is not None:
- return self.create_error_response(
- "suffix is not currently supported")
- model_name = self.base_model_paths[0].name
- request_id = f"cmpl-{random_uuid()}"
- created_time = int(time.time())
- # Schedule the request and get the result generator.
- generators: List[AsyncGenerator[RequestOutput, None]] = []
- try:
- (
- lora_request,
- prompt_adapter_request,
- ) = self._maybe_get_adapters(request)
- tokenizer = await self.engine_client.get_tokenizer(lora_request)
- guided_decode_logits_processor = (
- await self._guided_decode_logits_processor(request, tokenizer))
- prompts = list(
- self._tokenize_prompt_input_or_inputs(
- request,
- tokenizer,
- request.prompt,
- truncate_prompt_tokens=request.truncate_prompt_tokens,
- add_special_tokens=request.add_special_tokens,
- ))
- for i, prompt_inputs in enumerate(prompts):
- sampling_params = request.to_sampling_params(
- tokenizer,
- guided_decode_logits_processor,
- default_max_tokens=self.max_model_len -
- len(prompt_inputs["prompt_token_ids"]))
- request_id_item = f"{request_id}-{i}"
- self._log_inputs(request_id_item,
- prompt_inputs,
- params=sampling_params,
- lora_request=lora_request,
- prompt_adapter_request=prompt_adapter_request)
- generator = self.engine_client.generate(
- {"prompt_token_ids": prompt_inputs["prompt_token_ids"]},
- sampling_params,
- request_id_item,
- lora_request=lora_request,
- prompt_adapter_request=prompt_adapter_request,
- )
- generators.append(generator)
- except ValueError as e:
- # TODO: Use an aphrodite-specific Validation Error
- return self.create_error_response(str(e))
- result_generator = merge_async_iterators(
- *generators, is_cancelled=raw_request.is_disconnected)
- # Similar to the OpenAI API, when n != best_of, we do not stream the
- # results. In addition, we do not stream the results when use
- # beam search.
- stream = (request.stream
- and (request.best_of is None or request.n == request.best_of)
- and not request.use_beam_search)
- # Streaming response
- if stream:
- return self.completion_stream_generator(request,
- result_generator,
- request_id,
- created_time,
- model_name,
- num_prompts=len(prompts),
- tokenizer=tokenizer)
- # Non-streaming response
- final_res_batch: List[Optional[RequestOutput]] = [None] * len(prompts)
- try:
- async for i, res in result_generator:
- final_res_batch[i] = res
- for i, final_res in enumerate(final_res_batch):
- assert final_res is not None
- # The output should contain the input text
- # We did not pass it into Aphrodite engine to avoid being
- # redundant with the inputs token IDs
- if final_res.prompt is None:
- final_res.prompt = prompts[i]["prompt"]
- final_res_batch_checked = cast(List[RequestOutput],
- final_res_batch)
- response = self.request_output_to_completion_response(
- final_res_batch_checked,
- request,
- request_id,
- created_time,
- model_name,
- tokenizer,
- )
- except asyncio.CancelledError:
- return self.create_error_response("Client disconnected")
- except ValueError as e:
- # TODO: Use an aphrodite-specific Validation Error
- return self.create_error_response(str(e))
- # When user requests streaming but we don't stream, we still need to
- # return a streaming response with a single event.
- if request.stream:
- response_json = response.model_dump_json()
- async def fake_stream_generator() -> AsyncGenerator[str, None]:
- yield f"data: {response_json}\n\n"
- yield "data: [DONE]\n\n"
- return fake_stream_generator()
- return response
- async def completion_stream_generator(
- self,
- request: CompletionRequest,
- result_generator: AsyncIterator[Tuple[int, RequestOutput]],
- request_id: str,
- created_time: int,
- model_name: str,
- num_prompts: int,
- tokenizer: AnyTokenizer,
- ) -> AsyncGenerator[str, None]:
- num_choices = 1 if request.n is None else request.n
- previous_text_lens = [0] * num_choices * num_prompts
- previous_num_tokens = [0] * num_choices * num_prompts
- has_echoed = [False] * num_choices * num_prompts
- num_prompt_tokens = [0] * num_prompts
- try:
- async for prompt_idx, res in result_generator:
- prompt_token_ids = res.prompt_token_ids
- prompt_logprobs = res.prompt_logprobs
- prompt_text = res.prompt
- # Prompt details are excluded from later streamed outputs
- if res.prompt_token_ids is not None:
- num_prompt_tokens[prompt_idx] = len(res.prompt_token_ids)
- delta_token_ids: GenericSequence[int]
- out_logprobs: Optional[GenericSequence[Optional[Dict[
- int, Logprob]]]]
- for output in res.outputs:
- i = output.index + prompt_idx * num_choices
- # TODO: optimize the performance by avoiding full
- # text O(n^2) sending.
- assert request.max_tokens is not None
- if request.echo and request.max_tokens == 0:
- assert prompt_token_ids is not None
- assert prompt_text is not None
- # only return the prompt
- delta_text = prompt_text
- delta_token_ids = prompt_token_ids
- out_logprobs = prompt_logprobs
- has_echoed[i] = True
- elif (request.echo and request.max_tokens > 0
- and not has_echoed[i]):
- assert prompt_token_ids is not None
- assert prompt_text is not None
- assert prompt_logprobs is not None
- # echo the prompt and first token
- delta_text = prompt_text + output.text
- delta_token_ids = [
- *prompt_token_ids, *output.token_ids
- ]
- out_logprobs = [
- *prompt_logprobs,
- *(output.logprobs or []),
- ]
- has_echoed[i] = True
- else:
- # return just the delta
- delta_text = output.text
- delta_token_ids = output.token_ids
- out_logprobs = output.logprobs
- if request.logprobs is not None:
- assert out_logprobs is not None, (
- "Did not output logprobs")
- logprobs = self._create_completion_logprobs(
- token_ids=delta_token_ids,
- top_logprobs=out_logprobs,
- num_output_top_logprobs=request.logprobs,
- tokenizer=tokenizer,
- initial_text_offset=previous_text_lens[i],
- )
- else:
- logprobs = None
- previous_text_lens[i] += len(output.text)
- previous_num_tokens[i] += len(output.token_ids)
- finish_reason = output.finish_reason
- stop_reason = output.stop_reason
- chunk = CompletionStreamResponse(
- id=request_id,
- created=created_time,
- model=model_name,
- choices=[
- CompletionResponseStreamChoice(
- index=i,
- text=delta_text,
- logprobs=logprobs,
- finish_reason=finish_reason,
- stop_reason=stop_reason,
- )
- ])
- if (request.stream_options
- and request.stream_options.include_usage):
- if (request.stream_options.continuous_usage_stats
- or output.finish_reason is not None):
- prompt_tokens = num_prompt_tokens[prompt_idx]
- completion_tokens = previous_num_tokens[i]
- usage = UsageInfo(
- prompt_tokens=prompt_tokens,
- completion_tokens=completion_tokens,
- total_tokens=prompt_tokens + completion_tokens,
- )
- if request.stream_options.continuous_usage_stats:
- chunk.usage = usage
- else:
- chunk.usage = None
- response_json = chunk.model_dump_json(exclude_unset=False)
- yield f"data: {response_json}\n\n"
- if (request.stream_options
- and request.stream_options.include_usage):
- final_usage_chunk = CompletionStreamResponse(
- id=request_id,
- created=created_time,
- model=model_name,
- choices=[],
- usage=usage,
- )
- final_usage_data = (final_usage_chunk.model_dump_json(
- exclude_unset=False, exclude_none=True))
- yield f"data: {final_usage_data}\n\n"
- except ValueError as e:
- # TODO: Use an aphrodite-specific Validation Error
- data = self.create_streaming_error_response(str(e))
- yield f"data: {data}\n\n"
- yield "data: [DONE]\n\n"
- def request_output_to_completion_response(
- self,
- final_res_batch: List[RequestOutput],
- request: CompletionRequest,
- request_id: str,
- created_time: int,
- model_name: str,
- tokenizer: AnyTokenizer,
- ) -> CompletionResponse:
- choices: List[CompletionResponseChoice] = []
- num_prompt_tokens = 0
- num_generated_tokens = 0
- for final_res in final_res_batch:
- prompt_token_ids = final_res.prompt_token_ids
- assert prompt_token_ids is not None
- prompt_logprobs = final_res.prompt_logprobs
- prompt_text = final_res.prompt
- token_ids: GenericSequence[int]
- out_logprobs: Optional[GenericSequence[Optional[Dict[int,
- Logprob]]]]
- for output in final_res.outputs:
- assert request.max_tokens is not None
- if request.echo and request.max_tokens == 0:
- assert prompt_text is not None
- token_ids = prompt_token_ids
- out_logprobs = prompt_logprobs
- output_text = prompt_text
- elif request.echo and request.max_tokens > 0:
- assert prompt_text is not None
- token_ids = [*prompt_token_ids, *output.token_ids]
- if request.logprobs is None:
- out_logprobs = None
- else:
- assert prompt_logprobs is not None
- assert output.logprobs is not None
- out_logprobs = [
- *prompt_logprobs,
- *output.logprobs,
- ]
- output_text = prompt_text + output.text
- else:
- token_ids = output.token_ids
- out_logprobs = output.logprobs
- output_text = output.text
- if request.logprobs is not None:
- assert out_logprobs is not None, "Did not output logprobs"
- logprobs = self._create_completion_logprobs(
- token_ids=token_ids,
- top_logprobs=out_logprobs,
- tokenizer=tokenizer,
- num_output_top_logprobs=request.logprobs,
- )
- else:
- logprobs = None
- choice_data = CompletionResponseChoice(
- index=len(choices),
- text=output_text,
- logprobs=logprobs,
- finish_reason=output.finish_reason,
- stop_reason=output.stop_reason,
- prompt_logprobs=final_res.prompt_logprobs,
- )
- choices.append(choice_data)
- num_generated_tokens += len(output.token_ids)
- num_prompt_tokens += len(prompt_token_ids)
- usage = UsageInfo(
- prompt_tokens=num_prompt_tokens,
- completion_tokens=num_generated_tokens,
- total_tokens=num_prompt_tokens + num_generated_tokens,
- )
- return CompletionResponse(
- id=request_id,
- created=created_time,
- model=model_name,
- choices=choices,
- usage=usage,
- )
- def _create_completion_logprobs(
- self,
- token_ids: GenericSequence[int],
- top_logprobs: GenericSequence[Optional[Dict[int, Logprob]]],
- num_output_top_logprobs: int,
- tokenizer: AnyTokenizer,
- initial_text_offset: int = 0,
- ) -> CompletionLogProbs:
- """Create logprobs for OpenAI Completion API."""
- out_text_offset: List[int] = []
- out_token_logprobs: List[Optional[float]] = []
- out_tokens: List[str] = []
- out_top_logprobs: List[Optional[Dict[str, float]]] = []
- last_token_len = 0
- for i, token_id in enumerate(token_ids):
- step_top_logprobs = top_logprobs[i]
- if step_top_logprobs is None:
- token = tokenizer.decode(token_id)
- if self.return_tokens_as_token_ids:
- token = f"token_id:{token_id}"
- out_tokens.append(token)
- out_token_logprobs.append(None)
- out_top_logprobs.append(None)
- else:
- step_token = step_top_logprobs[token_id]
- token = self._get_decoded_token(
- step_token,
- token_id,
- tokenizer,
- return_as_token_id=self.return_tokens_as_token_ids,
- )
- token_logprob = max(step_token.logprob, -9999.0)
- out_tokens.append(token)
- out_token_logprobs.append(token_logprob)
- # makes sure to add the top num_output_top_logprobs + 1
- # logprobs, as defined in the openai API
- # (cf. https://github.com/openai/openai-openapi/blob/
- # 893ba52242dbd5387a97b96444ee1c742cfce9bd/openapi.yaml#L7153)
- out_top_logprobs.append({
- # Convert float("-inf") to the
- # JSON-serializable float that OpenAI uses
- self._get_decoded_token(
- top_lp[1],
- top_lp[0],
- tokenizer,
- return_as_token_id=self.return_tokens_as_token_ids):
- max(top_lp[1].logprob, -9999.0)
- for i, top_lp in enumerate(step_top_logprobs.items())
- if num_output_top_logprobs >= i
- })
- if len(out_text_offset) == 0:
- out_text_offset.append(initial_text_offset)
- else:
- out_text_offset.append(out_text_offset[-1] + last_token_len)
- last_token_len = len(token)
- return CompletionLogProbs(
- text_offset=out_text_offset,
- token_logprobs=out_token_logprobs,
- tokens=out_tokens,
- top_logprobs=out_top_logprobs,
- )
|