123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828 |
- import random
- from array import array
- from dataclasses import dataclass
- from typing import Dict, List, Optional, Tuple
- import torch
- from aphrodite.common.sampling_params import SamplingParams, SamplingType
- from aphrodite.common.sequence import SequenceData, SequenceGroupMetadata
- from aphrodite.common.utils import (PyObjectCache, async_tensor_h2d,
- is_pin_memory_available,
- make_tensor_with_pad, maybe_expand_dim)
- from aphrodite.triton_utils.sample import get_num_triton_sampler_splits
- _SAMPLING_EPS = 1e-5
- _SEED_0_REPLACEMENT = 3403598558
- # Some triton sampler related code is guarded before it is ready.
- _USE_TRITON_SAMPLER = False
- @dataclass
- class SequenceGroupToSample:
- # |---------- N-1 iteration --------|
- # |---------------- N iteration ---------------------|
- # |- tokenA -|......................|-- newTokens ---|
- # |---------- context_len ----------|
- # |-------------------- seq_len ----------------------|
- # |-- query_len ---|
- # Sequence ids for the sequence group in a previous step.
- seq_ids: List[int]
- sampling_params: SamplingParams
- # seq_id -> sequence data.
- seq_data: Dict[int, SequenceData]
- # The length of the sequence (all tokens seen in the past + new token to
- # compute attention) of the sequence group. None if it is in a decode
- # stage.
- seq_len: Optional[int]
- # The length of new query tokens to compute in the current step. None if it
- # is in a decode stage. The length of query_len <= seq_len if chunked
- # prefill is enabled.
- query_len: Optional[int]
- # A random number generator for sampling.
- generator: Optional[torch.Generator]
- # True if the sequence group is in prefill stage. False if it is in a
- # decode stage.
- is_prompt: bool
- # Query token indices from logits. to compute prompt logprob. Empty if
- # prompt logprob is not required.
- prompt_logprob_indices: List[int]
- # Sample token indices from logits. Empty if sampling is not required.
- sample_indices: List[int]
- @property
- def do_sample(self):
- return len(self.sample_indices) > 0
- def __post_init__(self):
- if len(self.prompt_logprob_indices) > 0:
- assert self.sampling_params.prompt_logprobs is not None
- if self.is_prompt:
- assert self.seq_len is not None
- assert self.query_len is not None
- def gen_seq_group_to_sample_builder(num_seqs: int):
- return lambda: SequenceGroupToSample(
- seq_ids=[0] * num_seqs,
- sampling_params=None,
- seq_data=None, # type: ignore
- seq_len=0,
- query_len=0,
- generator=None,
- is_prompt=True,
- prompt_logprob_indices=[],
- sample_indices=[])
- class SamplingMetadataCache:
- """Used to cache SamplingMetadata objects between scheduler iterations
- """
- def __init__(self):
- self._seq_group_to_sample_cache: Dict[int, PyObjectCache] = {}
- def get_cached_seq_group_to_sample(self, num_seqs):
- if num_seqs not in self._seq_group_to_sample_cache:
- self._seq_group_to_sample_cache[num_seqs] = PyObjectCache(
- gen_seq_group_to_sample_builder(num_seqs))
- obj = self._seq_group_to_sample_cache[num_seqs].get_object()
- return obj
- def reset(self):
- for cache in self._seq_group_to_sample_cache.values():
- cache.reset()
- class SamplingMetadata:
- """Metadata for input sequences. Used in sampler.
- The usage is as follow;
- ```
- hidden_states = execute_model(...)
- logits = hidden_states[sampling_metadata.selected_token_indices]
- sample(logits)
- def sample(logits):
- # Use categorized_sample_indices for sampling....
- ```
- Args:
- seq_groups: List of batched sequence groups.
- selected_token_indices: (num_query_tokens_to_logprob). Indices to find
- logits from the initial model output hidden states.
- categorized_sample_indices: SamplingType -> token indices to sample.
- Each token indices is 2D tensor of (num_indices, num_indices) where
- the first item means the sample index within the returned logit
- (before pruning padding), and the second item means the sample
- index after pruning using selected_token_indices.
- For example, if the returned logit is [1, 2, 3], and we select
- [1, 2] for sampling, the pruned logit will be [2, 3]. In this case,
- The first tuple is [1, 2] (sampled index within original logit),
- and the second tuple is [0, 1] (sampled index within pruned logit).
- num_prompts: Number of prompt sequence groups in seq_groups.
- skip_sampler_cpu_output: Indicates if we want to skip the GPU=>CPU
- serialization of token outputs.
- reuse_sampling_tensors: Indicates if we want to reuse sampling
- tensors that are part of the sampler forward pass. Currently,
- it is mainly used for multi-step decode.
- """
- def __init__(
- self,
- seq_groups: List[SequenceGroupToSample],
- selected_token_indices: torch.Tensor,
- categorized_sample_indices: Dict[SamplingType, torch.Tensor],
- num_prompts: int,
- skip_sampler_cpu_output: bool = False,
- reuse_sampling_tensors: bool = False,
- ) -> None:
- self.seq_groups = seq_groups
- self.selected_token_indices = selected_token_indices
- self.categorized_sample_indices = categorized_sample_indices
- self.num_prompts = num_prompts
- self.skip_sampler_cpu_output = skip_sampler_cpu_output
- self.reuse_sampling_tensors = reuse_sampling_tensors
- @staticmethod
- def prepare(
- seq_group_metadata_list: List[SequenceGroupMetadata],
- seq_lens: List[int],
- query_lens: Optional[List[int]],
- device: str,
- pin_memory: bool,
- generators: Optional[Dict[str, torch.Generator]] = None,
- cache: Optional[SamplingMetadataCache] = None
- ) -> "SamplingMetadata":
- (
- seq_groups,
- selected_token_indices,
- categorized_sample_indices,
- num_prompts,
- ) = _prepare_seq_groups(seq_group_metadata_list, seq_lens, query_lens,
- device, generators, cache)
- selected_token_indices = async_tensor_h2d(selected_token_indices,
- dtype=torch.long,
- target_device=device,
- pin_memory=pin_memory)
- categorized_sample_indices = {
- t: maybe_expand_dim(
- async_tensor_h2d(seq_ids,
- dtype=torch.int,
- target_device=device,
- pin_memory=pin_memory), 2, 2)
- for t, seq_ids in categorized_sample_indices.items()
- }
- sampling_metadata = SamplingMetadata(
- seq_groups=seq_groups,
- selected_token_indices=selected_token_indices,
- categorized_sample_indices=categorized_sample_indices,
- num_prompts=num_prompts,
- )
- return sampling_metadata
- def __repr__(self) -> str:
- return (
- "SamplingMetadata("
- f"seq_groups={self.seq_groups}, "
- f"selected_token_indices={self.selected_token_indices}, "
- f"categorized_sample_indices={self.categorized_sample_indices}), ")
- def _prepare_seq_groups(
- seq_group_metadata_list: List[SequenceGroupMetadata],
- seq_lens: List[int],
- query_lens: Optional[List[int]],
- device: str,
- generators: Optional[Dict[str, torch.Generator]] = None,
- cache: Optional[SamplingMetadataCache] = None,
- ) -> Tuple[List[SequenceGroupToSample], List[int], Dict[
- SamplingType, List[Tuple[int, int]]], int]:
- """Prepare sequence groups and indices for sampling.
- Args:
- seq_group_metadata_list: A list of sequence group to batch.
- seq_lens: A list of sequence lens per sequence group.
- Index of prompt len should match with seq_group_metadata_list.
- query_lens: A list of query lengths. Prompt lens include the length
- of entire prompt tokens, and it could be shorter.
- device: A device to use for random number generators,
- `SequenceGroupToSample.generator`.
- generators: A store of per-request random number generators used
- for seeded requests.
- Returns:
- seq_groups: A list of sequence group to sample.
- selected_token_indices: See the definition from `SamplingMetadata`.
- categorized_sample_indices: See the definition from `SamplingMetadata`.
- num_prompts: Total number of prompts from `seq_group_metadata_list`.
- """
- # Batched sequence groups for the current model forward stsep.
- seq_groups: List[SequenceGroupToSample] = []
- # A list of token indices to sample/compute logprob. It is used to
- # prune the outcome logits from the model for the performance.
- selected_token_indices: List[int] = []
- # Used for selected_token_indices.
- model_output_idx = 0
- # Sampling type -> (
- # indices to sample/prompt logprob within pruned output logits,
- # indices to sample within pruned logits)
- categorized_sample_indices: Dict[SamplingType, List[Tuple[int, int]]] = {
- t: []
- for t in SamplingType
- }
- # Index of logits to compute logprob. Logits include both prompt logprob
- # and sample logprob indices.
- logit_idx = 0
- # Index to sample from a sample tensor. It is used by triton sample kernel.
- # See `_sample_with_triton_kernel` for more details.
- sample_idx = 0
- # Total number of prompts from given sequence groups.
- num_prompts = 0
- for i, seq_group_metadata in enumerate(seq_group_metadata_list):
- seq_ids = seq_group_metadata.seq_data.keys()
- if cache is not None:
- sample_obj = cache.get_cached_seq_group_to_sample(len(seq_ids))
- for j, seq_id in enumerate(seq_ids):
- sample_obj.seq_ids[j] = seq_id
- sample_obj.prompt_logprob_indices.clear()
- sample_obj.sample_indices.clear()
- sampling_params = seq_group_metadata.sampling_params
- is_prompt = seq_group_metadata.is_prompt
- generator: Optional[torch.Generator] = None
- # If the current seq group is in decode stage, it is None.
- seq_len: Optional[int] = None
- query_len: Optional[int] = None
- prompt_logprob_indices: List[int] = \
- sample_obj.prompt_logprob_indices if cache is not None else []
- sample_indices: List[int] = \
- sample_obj.sample_indices if cache is not None else []
- do_sample = seq_group_metadata.do_sample
- if seq_group_metadata.is_prompt:
- if sampling_params.seed is not None:
- generator = torch.Generator(device=device).manual_seed(
- sampling_params.seed)
- if generators is not None:
- generators[seq_group_metadata.request_id] = generator
- num_prompts += 1
- num_prefill_sample = len(seq_ids)
- assert num_prefill_sample == 1
- assert query_lens is not None and seq_lens is not None
- query_len, seq_len = query_lens[i], seq_lens[i]
- # If we need sampling, exclude num_prefill_sample tokens from
- # prompt logprob.
- prompt_logprob_len = (query_len - num_prefill_sample
- if do_sample else query_len)
- sample_len = num_prefill_sample if do_sample else 0
- else:
- # Decode
- prompt_logprob_len = 0
- sample_len = len(seq_ids) if do_sample else 0
- if sampling_params.seed is not None and generators is not None:
- generator = generators.get(seq_group_metadata.request_id)
- # Update indices to select from the model output.
- """
- This blocks computes selected_token_indices which is used in the
- following way.
- hidden_states = model(...)
- logits = hidden_states[selected_token_indices]
- """
- if sampling_params.prompt_logprobs is not None:
- selected_token_indices.extend(
- range(model_output_idx, model_output_idx + prompt_logprob_len))
- model_output_idx += prompt_logprob_len
- if do_sample:
- selected_token_indices.extend(
- range(model_output_idx, model_output_idx + sample_len))
- model_output_idx += sample_len
- # We now find indices for logprob computation and sampling.
- """
- This block computes categorized_sample_indices which is used in the
- following way.
- hidden_states = model(...)
- logits = hidden_states[selected_token_indices]
- def sample(logits):
- # Use categorized_sample_indices for sampling.
- # prompt_logprob_indices to find prompt logprob indices.
- # sample_indices to find sample indices.
- """
- if sampling_params.prompt_logprobs is not None:
- prompt_logprob_indices.extend(
- range(logit_idx, logit_idx + prompt_logprob_len))
- logit_idx += prompt_logprob_len
- if do_sample:
- sample_indices.extend(range(logit_idx, logit_idx + sample_len))
- categorized_sample_indices[sampling_params.sampling_type].extend(
- list(
- zip(range(logit_idx, logit_idx + sample_len),
- range(sample_idx, sample_idx + sample_len))))
- logit_idx += sample_len
- sample_idx += sample_len
- if cache is not None:
- sample_obj.sampling_params = sampling_params
- sample_obj.seq_data = seq_group_metadata.seq_data
- sample_obj.seq_len = seq_len
- sample_obj.query_len = query_len
- sample_obj.generator = generator
- sample_obj.is_prompt = is_prompt
- else:
- sample_obj = SequenceGroupToSample(
- seq_ids=list(seq_ids),
- sampling_params=sampling_params,
- seq_data=seq_group_metadata.seq_data,
- seq_len=seq_len,
- query_len=query_len,
- generator=generator,
- is_prompt=is_prompt,
- prompt_logprob_indices=list(prompt_logprob_indices),
- sample_indices=list(sample_indices))
- seq_groups.append(sample_obj)
- if cache is not None:
- cache.reset()
- return (seq_groups, selected_token_indices, categorized_sample_indices,
- num_prompts)
- @dataclass
- class SamplingTensors:
- """Tensors for sampling."""
- temperatures: torch.Tensor
- temperature_lasts: torch.Tensor
- top_ps: torch.Tensor
- top_ks: torch.Tensor
- top_as: torch.Tensor
- min_ps: torch.Tensor
- presence_penalties: torch.Tensor
- frequency_penalties: torch.Tensor
- repetition_penalties: torch.Tensor
- rep_pen_ranges: torch.Tensor
- tfss: torch.Tensor
- eta_cutoffs: torch.Tensor
- epsilon_cutoffs: torch.Tensor
- typical_ps: torch.Tensor
- smoothing_factors: torch.Tensor
- smoothing_curves: torch.Tensor
- xtc_thresholds: torch.Tensor
- xtc_probabilities: torch.Tensor
- sampling_seeds: torch.Tensor
- sample_indices: torch.Tensor
- extra_seeds: Optional[torch.Tensor]
- prompt_tokens: torch.Tensor
- output_tokens: torch.Tensor
- @classmethod
- def from_sampling_metadata(
- cls,
- sampling_metadata: "SamplingMetadata",
- vocab_size: int,
- device: torch.device,
- dtype: torch.dtype,
- *,
- extra_seeds_to_generate: int = 0,
- extra_entropy: Optional[Tuple[int, ...]] = None
- ) -> Tuple["SamplingTensors", bool, bool, bool, bool, bool, bool, bool,
- bool, bool, bool, bool]:
- """
- extra_seeds_to_generate: extra seeds to generate using the
- user-defined seed for each sequence.
- extra_entropy: extra entropy to use when generating seeds.
- """
- prompt_tokens: List[array] = []
- output_tokens: List[array] = []
- top_ks: List[int] = []
- temperatures: List[float] = []
- temperature_lasts: List[bool] = []
- top_ps: List[float] = []
- top_as: List[float] = []
- min_ps: List[float] = []
- presence_penalties: List[float] = []
- frequency_penalties: List[float] = []
- repetition_penalties: List[float] = []
- rep_pen_ranges: List[int] = []
- tfss: List[float] = []
- eta_cutoffs: List[float] = []
- epsilon_cutoffs: List[float] = []
- typical_ps: List[float] = []
- smoothing_factors: List[float] = []
- smoothing_curves: List[float] = []
- xtc_thresholds: List[float] = []
- xtc_probabilities: List[float] = []
- sampling_seeds: List[int] = []
- sample_indices: List[int] = []
- do_penalties = False
- do_top_p_top_k = False
- do_top_as = False
- do_min_p = False
- do_tfss = False
- do_eta_cutoffs = False
- do_epsilon_cutoffs = False
- do_typical_ps = False
- do_quadratic = False
- do_xtc = False
- do_temp_last = False
- if _USE_TRITON_SAMPLER:
- prompt_best_of: List[int] = []
- # We need one base seed per Triton slice.
- seeds_to_generate = (extra_seeds_to_generate +
- get_num_triton_sampler_splits(vocab_size))
- assert sampling_metadata.seq_groups is not None
- for seq_group in sampling_metadata.seq_groups:
- seq_ids = seq_group.seq_ids
- sampling_params = seq_group.sampling_params
- temperature = sampling_params.temperature
- temperature_last = sampling_params.temperature_last
- p = sampling_params.presence_penalty
- f = sampling_params.frequency_penalty
- r = sampling_params.repetition_penalty
- rep_pen_range = sampling_params.rep_pen_range
- top_p = sampling_params.top_p
- top_a = sampling_params.top_a
- min_p = sampling_params.min_p
- tfs = sampling_params.tfs
- eta_cutoff = sampling_params.eta_cutoff
- epsilon_cutoff = sampling_params.epsilon_cutoff
- typical_p = sampling_params.typical_p
- smoothing_factor = sampling_params.smoothing_factor
- smoothing_curve = sampling_params.smoothing_curve
- xtc_threshold = sampling_params.xtc_threshold
- xtc_probability = sampling_params.xtc_probability
- # k should not be greater than the vocab size.
- top_k = min(sampling_params.top_k, vocab_size)
- top_k = vocab_size if top_k == -1 else top_k
- if temperature < _SAMPLING_EPS:
- # NOTE: Zero temperature means deterministic sampling
- # (i.e., greedy sampling or beam search).
- # Set the temperature to 1 to avoid division by zero.
- temperature = 1.0
- if not do_top_p_top_k and (top_p < 1.0 - _SAMPLING_EPS
- or top_k != vocab_size):
- do_top_p_top_k = True
- if do_top_as is False and top_a > 0.0:
- do_top_as = True
- if not do_min_p and min_p > _SAMPLING_EPS:
- do_min_p = True
- if not do_penalties and (abs(p) >= _SAMPLING_EPS
- or abs(f) >= _SAMPLING_EPS
- or abs(r - 1.0) >= _SAMPLING_EPS):
- do_penalties = True
- if do_tfss is False and tfs < 1.0 - _SAMPLING_EPS:
- do_tfss = True
- if do_eta_cutoffs is False and eta_cutoff > _SAMPLING_EPS:
- do_eta_cutoffs = True
- if do_epsilon_cutoffs is False and epsilon_cutoff > _SAMPLING_EPS:
- do_epsilon_cutoffs = True
- if do_typical_ps is False and typical_p < 1.0 - _SAMPLING_EPS:
- do_typical_ps = True
- if do_quadratic is False and (smoothing_factor > _SAMPLING_EPS
- or smoothing_curve > 1.0):
- do_quadratic = True
- if do_xtc is False and xtc_probability > _SAMPLING_EPS:
- do_xtc = True
- if do_temp_last is False and temperature_last:
- do_temp_last = True
- is_prompt = seq_group.is_prompt
- if (is_prompt and sampling_params.prompt_logprobs is not None):
- # For tokens in the prompt that we only need to get
- # their logprobs
- query_len = seq_group.query_len
- assert query_len is not None
- prefill_len = len(seq_group.prompt_logprob_indices)
- temperatures += [temperature] * prefill_len
- temperature_lasts += [temperature_last] * prefill_len
- top_ps += [top_p] * prefill_len
- top_ks += [top_k] * prefill_len
- top_as += [top_a] * prefill_len
- min_ps += [min_p] * prefill_len
- presence_penalties += [0] * prefill_len
- frequency_penalties += [0] * prefill_len
- repetition_penalties += [1] * prefill_len
- rep_pen_ranges += [rep_pen_range] * prefill_len
- tfss += [1] * prefill_len
- eta_cutoffs += [0] * prefill_len
- epsilon_cutoffs += [0] * prefill_len
- typical_ps += [1] * prefill_len
- smoothing_factors += [smoothing_factor] * prefill_len
- smoothing_curves += [smoothing_curve] * prefill_len
- xtc_thresholds += [xtc_threshold] * prefill_len
- xtc_probabilities += [xtc_probability] * prefill_len
- if seq_group.do_sample:
- sample_lens = len(seq_group.sample_indices)
- assert sample_lens == len(seq_ids)
- temperatures += [temperature] * len(seq_ids)
- temperature_lasts += [temperature_last] * len(seq_ids)
- top_ps += [top_p] * len(seq_ids)
- top_ks += [top_k] * len(seq_ids)
- top_as += [top_a] * len(seq_ids)
- min_ps += [min_p] * len(seq_ids)
- presence_penalties += [p] * len(seq_ids)
- frequency_penalties += [f] * len(seq_ids)
- repetition_penalties += [r] * len(seq_ids)
- rep_pen_ranges += [rep_pen_range] * len(seq_ids)
- tfss += [tfs] * len(seq_ids)
- eta_cutoffs += [eta_cutoff] * len(seq_ids)
- epsilon_cutoffs += [epsilon_cutoff] * len(seq_ids)
- typical_ps += [typical_p] * len(seq_ids)
- smoothing_factors += [smoothing_factor] * len(seq_ids)
- smoothing_curves += [smoothing_curve] * len(seq_ids)
- xtc_thresholds += [xtc_threshold] * len(seq_ids)
- xtc_probabilities += [xtc_probability] * len(seq_ids)
- if _USE_TRITON_SAMPLER:
- if is_prompt:
- prompt_best_of.append(sampling_params.best_of)
- query_len = seq_group.query_len
- assert query_len is not None
- seed = sampling_params.seed
- is_greedy = sampling_params.sampling_type == SamplingType.GREEDY
- for seq_id in seq_ids:
- seq_data = seq_group.seq_data[seq_id]
- extra_entropy = extra_entropy or ()
- seq_seeds = cls._get_sequence_seeds(
- seed,
- seq_data.get_len(),
- *extra_entropy,
- seq_id,
- seeds_to_generate=seeds_to_generate,
- is_greedy=is_greedy)
- sampling_seeds.append(seq_seeds)
- sample_indices.extend(seq_group.sample_indices)
- if do_penalties:
- for seq_group in sampling_metadata.seq_groups:
- seq_ids = seq_group.seq_ids
- if (seq_group.is_prompt
- and sampling_params.prompt_logprobs is not None):
- prefill_len = len(seq_group.prompt_logprob_indices)
- prompt_tokens.extend(
- array('l') for _ in range(prefill_len))
- output_tokens.extend(
- array('l') for _ in range(prefill_len))
- if seq_group.do_sample:
- for seq_id in seq_ids:
- seq_data = seq_group.seq_data[seq_id]
- prompt_tokens.append(seq_data.prompt_token_ids_array)
- output_tokens.append(seq_data.output_token_ids_array)
- sampling_tensors = SamplingTensors.from_lists(
- temperatures, temperature_lasts, top_ps, top_ks, top_as, min_ps,
- presence_penalties, frequency_penalties, repetition_penalties,
- rep_pen_ranges, tfss, eta_cutoffs, epsilon_cutoffs, typical_ps,
- smoothing_factors, smoothing_curves, xtc_thresholds,
- xtc_probabilities, sampling_seeds, sample_indices, prompt_tokens,
- output_tokens, vocab_size, extra_seeds_to_generate, device, dtype)
- return (sampling_tensors, do_penalties, do_top_p_top_k, do_top_as,
- do_min_p, do_tfss, do_eta_cutoffs, do_epsilon_cutoffs,
- do_typical_ps, do_quadratic, do_xtc, do_temp_last)
- @classmethod
- def from_lists(cls, temperatures: List[float],
- temperature_lasts: List[bool], top_ps: List[float],
- top_ks: List[int], top_as: List[float],
- min_ps: List[float], presence_penalties: List[float],
- frequency_penalties: List[float],
- repetition_penalties: List[float],
- rep_pen_ranges: List[int], tfss: List[float],
- eta_cutoffs: List[float], epsilon_cutoffs: List[float],
- typical_ps: List[float], smoothing_factors: List[float],
- smoothing_curves: List[float], xtc_thresholds: List[float],
- xtc_probabilities: List[float], sampling_seeds: List[int],
- sample_indices: List[int], prompt_tokens: List[array],
- output_tokens: List[array], vocab_size: int,
- extra_seeds_to_generate: int, device: torch.device,
- dtype: torch.dtype) -> "SamplingTensors":
- # Note that the performance will be very bad without
- # pinned memory.
- pin_memory = is_pin_memory_available()
- do_penalties = prompt_tokens or output_tokens
- if do_penalties:
- prompt_t = make_tensor_with_pad(
- prompt_tokens,
- vocab_size,
- device="cpu",
- dtype=torch.int64,
- pin_memory=pin_memory,
- )
- output_t = make_tensor_with_pad(
- output_tokens,
- vocab_size,
- device="cpu",
- dtype=torch.int64,
- pin_memory=pin_memory,
- )
- else:
- empty_tensor = torch.empty(0, device=device, dtype=torch.long)
- prompt_t = empty_tensor
- output_t = empty_tensor
- temperatures_t = torch.tensor(
- temperatures,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory,
- )
- temp_lasts_t = torch.tensor(
- temperature_lasts,
- device="cpu",
- dtype=torch.bool,
- pin_memory=pin_memory,
- )
- top_ps_t = torch.tensor(
- top_ps,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory,
- )
- top_as_t = torch.tensor(top_as,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- min_ps_t = torch.tensor(
- min_ps,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory,
- )
- presence_penalties_t = torch.tensor(
- presence_penalties,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory,
- )
- frequency_penalties_t = torch.tensor(
- frequency_penalties,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory,
- )
- repetition_penalties_t = torch.tensor(
- repetition_penalties,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory,
- )
- rep_pen_ranges_t = torch.tensor(
- rep_pen_ranges,
- device="cpu",
- dtype=torch.int,
- pin_memory=pin_memory,
- )
- top_ks_t = torch.tensor(
- top_ks,
- device="cpu",
- dtype=torch.int,
- pin_memory=pin_memory,
- )
- tfss_t = torch.tensor(tfss,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- eta_cutoffs_t = torch.tensor(eta_cutoffs,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- epsilon_cutoffs_t = torch.tensor(epsilon_cutoffs,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- typical_ps_t = torch.tensor(typical_ps,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- smoothing_factors_t = torch.tensor(smoothing_factors,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- smoothing_curves_t = torch.tensor(smoothing_curves,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- xtc_thresholds_t = torch.tensor(xtc_thresholds,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- xtc_probabilities_t = torch.tensor(xtc_probabilities,
- device="cpu",
- dtype=dtype,
- pin_memory=pin_memory)
- sample_indices_t = torch.tensor(
- sample_indices,
- device="cpu",
- dtype=torch.long,
- pin_memory=pin_memory,
- )
- # need to transpose and make contiguous to
- # copy the tensor correctly.
- # [batch_size, n_seeds] -> [n_seeds, batch_size]
- sampling_seeds_t = torch.tensor(
- sampling_seeds,
- device="cpu",
- dtype=torch.long,
- pin_memory=pin_memory,
- ).t().contiguous()
- # Because the memory is pinned, we can do non-blocking
- # transfer to device.
- # How many seeds the sample operation itself will need.
- num_base_seeds = sampling_seeds_t.shape[0] - extra_seeds_to_generate
- sampling_seeds_gpu = sampling_seeds_t.to(device=device,
- non_blocking=True)
- extra_seeds_gpu = sampling_seeds_gpu[num_base_seeds:]
- if not extra_seeds_gpu.numel():
- extra_seeds_gpu = None
- sampling_seeds_gpu = sampling_seeds_gpu[:num_base_seeds]
- return cls(
- temperatures=temperatures_t.to(device=device, non_blocking=True),
- temperature_lasts=temp_lasts_t.to(device=device, non_blocking=True),
- top_ps=top_ps_t.to(device=device, non_blocking=True),
- top_ks=top_ks_t.to(device=device, non_blocking=True),
- top_as=top_as_t.to(device=device, non_blocking=True),
- min_ps=min_ps_t.to(device=device, non_blocking=True),
- presence_penalties=presence_penalties_t.to(device=device,
- non_blocking=True),
- frequency_penalties=frequency_penalties_t.to(device=device,
- non_blocking=True),
- repetition_penalties=repetition_penalties_t.to(device=device,
- non_blocking=True),
- rep_pen_ranges=rep_pen_ranges_t.to(device=device,
- non_blocking=True),
- tfss=tfss_t.to(device=device, non_blocking=True),
- eta_cutoffs=eta_cutoffs_t.to(device=device, non_blocking=True),
- epsilon_cutoffs=epsilon_cutoffs_t.to(device=device,
- non_blocking=True),
- smoothing_factors=smoothing_factors_t.to(device=device,
- non_blocking=True),
- smoothing_curves=smoothing_curves_t.to(device=device,
- non_blocking=True),
- xtc_thresholds=xtc_thresholds_t.to(device=device,
- non_blocking=True),
- xtc_probabilities=xtc_probabilities_t.to(device=device,
- non_blocking=True),
- typical_ps=typical_ps_t.to(device=device, non_blocking=True),
- prompt_tokens=prompt_t.to(device=device, non_blocking=True),
- output_tokens=output_t.to(device=device, non_blocking=True),
- sampling_seeds=sampling_seeds_gpu,
- sample_indices=sample_indices_t.to(device=device,
- non_blocking=True),
- extra_seeds=extra_seeds_gpu,
- )
- @staticmethod
- def _get_sequence_seeds(
- seed: int,
- *extra_entropy: int,
- seeds_to_generate: int,
- is_greedy: bool,
- ):
- """Get `seeds_to_generate` child seeds from `seed` and extra entropy."""
- if not is_greedy:
- if seed is None:
- randint_fn = random.randint
- else:
- generator = random.Random(str((seed, ) + extra_entropy))
- randint_fn = generator.randint
- lo, hi = torch.iinfo(torch.long).min, torch.iinfo(torch.long).max
- # If the user/random sets seed = 0 but request should
- # have sampling, we need to change it to something
- # else. We use a constant in that case.
- # This way we don't need to create and load a bool
- # matrix in the sampling kernel, which reduces CPU
- # overhead and latency.
- seq_seeds = [
- randint_fn(lo, hi) or _SEED_0_REPLACEMENT
- for _ in range(seeds_to_generate)
- ]
- else:
- # For the kernel, seed == 0 means greedy decoding.
- seq_seeds = [0] * seeds_to_generate
- return seq_seeds
|