123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- import base64
- import time
- from typing import AsyncIterator, List, Optional, Tuple
- import numpy as np
- from fastapi import Request
- from aphrodite.common.outputs import EmbeddingRequestOutput
- from aphrodite.common.utils import merge_async_iterators, random_uuid
- from aphrodite.endpoints.openai.protocol import (EmbeddingRequest,
- EmbeddingResponse,
- EmbeddingResponseData,
- UsageInfo)
- from aphrodite.endpoints.openai.serving_completions import parse_prompt_format
- from aphrodite.endpoints.openai.serving_engine import (LoRAModulePath,
- OpenAIServing)
- from aphrodite.engine.async_aphrodite import AsyncAphrodite
- TypeTokenIDs = List[int]
- def request_output_to_embedding_response(
- final_res_batch: List[EmbeddingRequestOutput], request_id: str,
- created_time: int, model_name: str,
- encoding_format: str) -> EmbeddingResponse:
- data = []
- num_prompt_tokens = 0
- for idx, final_res in enumerate(final_res_batch):
- assert final_res is not None
- prompt_token_ids = final_res.prompt_token_ids
- embedding = final_res.outputs.embedding
- if encoding_format == "base64":
- embedding = base64.b64encode(np.array(embedding))
- embedding_data = EmbeddingResponseData(index=idx, embedding=embedding)
- data.append(embedding_data)
- num_prompt_tokens += len(prompt_token_ids)
- usage = UsageInfo(
- prompt_tokens=num_prompt_tokens,
- total_tokens=num_prompt_tokens,
- )
- return EmbeddingResponse(
- id=request_id,
- created=created_time,
- model=model_name,
- data=data,
- usage=usage,
- )
- class OpenAIServingEmbedding(OpenAIServing):
- def __init__(self,
- engine: AsyncAphrodite,
- served_model_names: List[str],
- lora_modules: Optional[List[LoRAModulePath]] = None):
- super().__init__(engine=engine,
- served_model_names=served_model_names,
- lora_modules=lora_modules)
- async def create_embedding(self, request: EmbeddingRequest,
- raw_request: Request):
- """Completion API similar to OpenAI's API.
- See https://platform.openai.com/docs/api-reference/embeddings/create
- for the API specification. This API mimics the OpenAI Embedding API.
- """
- error_check_ret = await self._check_model(request)
- if error_check_ret is not None:
- return error_check_ret
- # Return error for unsupported features.
- encoding_format = (request.encoding_format
- if request.encoding_format else "float")
- if request.dimensions is not None:
- return self.create_error_response(
- "dimensions is currently not supported")
- model_name = request.model
- request_id = f"cmpl-{random_uuid()}"
- created_time = int(time.monotonic())
- # Schedule the request and get the result generator.
- generators = []
- try:
- prompt_is_tokens, prompts = parse_prompt_format(request.input)
- pooling_params = request.to_pooling_params()
- for i, prompt in enumerate(prompts):
- if prompt_is_tokens:
- prompt_formats = self._validate_prompt_and_tokenize(
- request, prompt_ids=prompt)
- else:
- prompt_formats = self._validate_prompt_and_tokenize(
- request, prompt=prompt)
- prompt_ids, prompt_text = prompt_formats
- generator = self.engine.encode(
- {
- "prompt": prompt_text,
- "prompt_token_ids": prompt_ids
- },
- pooling_params,
- f"{request_id}-{i}",
- )
- generators.append(generator)
- except ValueError as e:
- # TODO: Use a aphrodite-specific Validation Error
- return self.create_error_response(str(e))
- result_generator: AsyncIterator[Tuple[
- int, EmbeddingRequestOutput]] = merge_async_iterators(*generators)
- # Non-streaming response
- final_res_batch: List[Optional[EmbeddingRequestOutput]]
- final_res_batch = [None] * len(prompts)
- try:
- async for i, res in result_generator:
- if await raw_request.is_disconnected():
- # Abort the request if the client disconnects.
- await self.engine.abort(f"{request_id}-{i}")
- # TODO: Use a aphrodite-specific Validation Error
- return self.create_error_response("Client disconnected")
- final_res_batch[i] = res
- response = request_output_to_embedding_response(
- final_res_batch, request_id, created_time, model_name,
- encoding_format)
- except ValueError as e:
- # TODO: Use a aphrodite-specific Validation Error
- return self.create_error_response(str(e))
- return response
|