123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- from typing import List, Optional, Tuple
- import torch
- from loguru import logger
- from torch import nn
- from aphrodite.common.config import (DeviceConfig, ModelConfig, ParallelConfig,
- SchedulerConfig)
- from aphrodite.common.sequence import SamplerOutput, SequenceGroupMetadata
- from aphrodite.common.utils import (is_pin_memory_available,
- make_tensor_with_pad)
- from aphrodite.modeling import SamplingMetadata
- from aphrodite.modeling.model_loader.neuron import get_neuron_model
- class NeuronModelRunner:
- def __init__(
- self,
- model_config: ModelConfig,
- parallel_config: ParallelConfig,
- scheduler_config: SchedulerConfig,
- device_config: DeviceConfig,
- ):
- self.model_config = model_config
- self.parallel_config = parallel_config
- self.scheduler_config = scheduler_config
- if model_config is not None and model_config.get_sliding_window():
- logger.warning("Sliding window is not supported on Neuron. "
- "The model will run without sliding window.")
- self.device_config = (device_config
- if device_config is not None else DeviceConfig())
- self.device = self.device_config.device
- self.pin_memory = is_pin_memory_available()
- # Lazy initialization.
- self.model: nn.Module # initialize after load_model.
- def load_model(self) -> None:
- self.model = get_neuron_model(self.model_config,
- parallel_config=self.parallel_config,
- scheduler_config=self.scheduler_config)
- def _prepare_prompt(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, List[int]]:
- assert len(seq_group_metadata_list) > 0
- input_tokens: List[List[int]] = []
- input_positions: List[List[int]] = []
- input_block_ids: List[int] = []
- seq_lens: List[int] = []
- for seq_group_metadata in seq_group_metadata_list:
- assert seq_group_metadata.is_prompt
- seq_ids = list(seq_group_metadata.seq_data.keys())
- assert len(seq_ids) == 1
- seq_id = seq_ids[0]
- seq_data = seq_group_metadata.seq_data[seq_id]
- prompt_tokens = seq_data.get_token_ids()
- seq_len = len(prompt_tokens)
- seq_lens.append(seq_len)
- input_tokens.append(prompt_tokens)
- input_positions.append(list(range(seq_len)))
- assert seq_group_metadata.block_tables is not None
- block_table = seq_group_metadata.block_tables[seq_id]
- assert len(block_table) == 1
- input_block_ids.append(block_table[0])
- max_seq_len = max(seq_lens)
- assert max_seq_len > 0
- input_tokens = make_tensor_with_pad(input_tokens,
- max_seq_len,
- pad=0,
- dtype=torch.long,
- device=self.device)
- input_positions = make_tensor_with_pad(input_positions,
- max_seq_len,
- pad=0,
- dtype=torch.long,
- device=self.device)
- input_block_ids = torch.tensor(input_block_ids,
- dtype=torch.long,
- device=self.device)
- return input_tokens, input_positions, input_block_ids, seq_lens
- def _prepare_decode(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- assert len(seq_group_metadata_list) > 0
- input_tokens: List[List[int]] = []
- input_positions: List[List[int]] = []
- input_block_ids: List[int] = []
- context_lens: List[int] = []
- for seq_group_metadata in seq_group_metadata_list:
- assert not seq_group_metadata.is_prompt
- seq_ids = list(seq_group_metadata.seq_data.keys())
- for seq_id in seq_ids:
- seq_data = seq_group_metadata.seq_data[seq_id]
- generation_token = seq_data.get_last_token_id()
- input_tokens.append([generation_token])
- seq_len = seq_data.get_len()
- position = seq_len - 1
- input_positions.append([position])
- context_lens.append(seq_len)
- assert seq_group_metadata.block_tables is not None
- block_table = seq_group_metadata.block_tables[seq_id]
- assert len(block_table) == 1
- input_block_ids.append(block_table[0])
- input_tokens = make_tensor_with_pad(input_tokens,
- max_len=1,
- pad=0,
- dtype=torch.long,
- device=self.device)
- input_positions = make_tensor_with_pad(input_positions,
- max_len=1,
- pad=0,
- dtype=torch.long,
- device=self.device)
- context_lens = torch.tensor(context_lens,
- dtype=torch.int,
- device=self.device)
- input_block_ids = torch.tensor(input_block_ids,
- dtype=torch.long,
- device=self.device)
- return input_tokens, input_positions, input_block_ids
- def prepare_input_tensors(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, SamplingMetadata]:
- # NOTE: We assume that all sequences in the group are all prompts or
- # all decodes.
- is_prompt = seq_group_metadata_list[0].is_prompt
- # Prepare input tensors.
- if is_prompt:
- (input_tokens, input_positions, input_block_ids,
- seq_lens) = self._prepare_prompt(seq_group_metadata_list)
- else:
- (input_tokens, input_positions,
- input_block_ids) = self._prepare_decode(seq_group_metadata_list)
- seq_lens = []
- sampling_metadata = SamplingMetadata.prepare(
- seq_group_metadata_list,
- seq_lens,
- # query_lens is not needed if chunked prefill is not
- # supported. Since neuron worker doesn't support chunked prefill
- # just use seq_lens instead.
- seq_lens,
- self.device,
- self.pin_memory)
- return (input_tokens, input_positions, input_block_ids,
- sampling_metadata)
- @torch.inference_mode()
- def execute_model(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- ) -> Optional[SamplerOutput]:
- (input_tokens, input_positions, input_block_ids, sampling_metadata
- ) = self.prepare_input_tensors(seq_group_metadata_list)
- hidden_states = self.model(
- input_ids=input_tokens,
- positions=input_positions,
- input_block_ids=input_block_ids,
- )
- # Compute the logits.
- logits = self.model.compute_logits(hidden_states, sampling_metadata)
- # Sample the next token.
- output = self.model.sample(
- logits=logits,
- sampling_metadata=sampling_metadata,
- )
- return output
- @property
- def vocab_size(self) -> int:
- return self.model_config.get_vocab_size()
|