logits_processor.py 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127
  1. """A layer that compute logits from hidden_stats."""
  2. import inspect
  3. from typing import Optional
  4. import torch
  5. import torch.nn as nn
  6. from aphrodite.distributed import tensor_model_parallel_gather
  7. from aphrodite.modeling.sampling_metadata import SamplingMetadata
  8. class LogitsProcessor(nn.Module):
  9. """Process logits and apply logits processors from sampling metadata.
  10. This layer does the following:
  11. 1. Gather logits from model hidden_states.
  12. 2. Scale logits if needed.
  13. 3. Apply logits processors (if any).
  14. """
  15. def __init__(self,
  16. vocab_size: int,
  17. org_vocab_size: Optional[int] = None,
  18. scale: Optional[float] = 1.0,
  19. logits_as_input: bool = False) -> None:
  20. """
  21. Args:
  22. scale: A scaling factor to apply to the logits.
  23. """
  24. super().__init__()
  25. self.scale = scale
  26. self.vocab_size = vocab_size
  27. # Whether the input is logits (default is hidden states).
  28. self.logits_as_input = logits_as_input
  29. # original vocabulary size (without LoRA).
  30. self.org_vocab_size = org_vocab_size or vocab_size
  31. def forward(
  32. self,
  33. embedding: torch.Tensor,
  34. hidden_states: torch.Tensor,
  35. sampling_metadata: SamplingMetadata,
  36. embedding_bias: Optional[torch.Tensor] = None,
  37. ) -> torch.Tensor:
  38. if self.logits_as_input:
  39. logits = hidden_states
  40. else:
  41. hidden_states = _prune_hidden_states(hidden_states,
  42. sampling_metadata)
  43. # Get the logits for the next tokens.
  44. logits = self._get_logits(hidden_states, embedding, embedding_bias)
  45. if logits is not None:
  46. logits *= self.scale
  47. # Apply logits processors (if any).
  48. logits = _apply_logits_processors(logits, sampling_metadata)
  49. return logits
  50. def _get_logits(self, hidden_states: torch.Tensor, embedding: torch.Tensor,
  51. embedding_bias: Optional[torch.Tensor]) -> torch.Tensor:
  52. # Get the logits for the next tokens.
  53. logits = torch.matmul(hidden_states, embedding.t())
  54. if embedding_bias is not None:
  55. logits += embedding_bias
  56. logits = tensor_model_parallel_gather(logits)
  57. # Remove paddings in vocab (if any).
  58. if logits is not None:
  59. logits = logits[:, :self.org_vocab_size]
  60. return logits
  61. def extra_repr(self) -> str:
  62. s = f"vocab_size={self.vocab_size}"
  63. s += f", forg_vocab_size={self.org_vocab_size}"
  64. s += f", scale={self.scale}, logits_as_input={self.logits_as_input}"
  65. return s
  66. def _prune_hidden_states(
  67. hidden_states: torch.Tensor,
  68. sampling_metadata: SamplingMetadata,
  69. ) -> torch.Tensor:
  70. return hidden_states.index_select(0,
  71. sampling_metadata.selected_token_indices)
  72. def _apply_logits_processors(
  73. logits: torch.Tensor,
  74. sampling_metadata: SamplingMetadata,
  75. ) -> torch.Tensor:
  76. found_logits_processors = False
  77. logits_processed = 0
  78. for seq_group in sampling_metadata.seq_groups:
  79. seq_ids = seq_group.seq_ids
  80. sampling_params = seq_group.sampling_params
  81. logits_processors = sampling_params.logits_processors
  82. if logits_processors:
  83. found_logits_processors = True
  84. for seq_id, logits_row_idx in zip(seq_ids,
  85. seq_group.sample_indices):
  86. logits_row = logits[logits_row_idx]
  87. past_tokens_ids = seq_group.seq_data[seq_id].output_token_ids
  88. prompt_tokens_ids = seq_group.seq_data[seq_id].prompt_token_ids
  89. for logits_processor in logits_processors:
  90. parameters = inspect.signature(logits_processor).parameters
  91. if len(parameters) == 3:
  92. logits_row = logits_processor(prompt_tokens_ids,
  93. past_tokens_ids,
  94. logits_row)
  95. else:
  96. logits_row = logits_processor(past_tokens_ids,
  97. logits_row)
  98. logits[logits_row_idx] = logits_row
  99. logits_processed += len(seq_group.sample_indices) + len(
  100. seq_group.prompt_logprob_indices)
  101. if found_logits_processors:
  102. # verifies that no rows in logits were missed unexpectedly
  103. assert logits_processed == logits.shape[0]
  104. return logits