123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- from abc import ABC, abstractmethod
- from typing import List, Optional, Set, Tuple
- from aphrodite.common.config import (CacheConfig, DeviceConfig, LoadConfig,
- LoRAConfig, ModelConfig, ParallelConfig,
- SchedulerConfig, SpeculativeConfig,
- VisionLanguageConfig)
- from aphrodite.common.sequence import ExecuteModelRequest, SamplerOutput
- from aphrodite.lora.request import LoRARequest
- class ExecutorBase(ABC):
- """Base class for all executors.
- An executor is responsible for executing the model on a specific device
- type (e.g., CPU, GPU, Neuron, etc.). Or it can be a distributed executor
- that can execute the model on multiple devices.
- """
- def __init__(
- self,
- model_config: ModelConfig,
- cache_config: CacheConfig,
- parallel_config: ParallelConfig,
- scheduler_config: SchedulerConfig,
- device_config: DeviceConfig,
- load_config: LoadConfig,
- lora_config: Optional[LoRAConfig],
- vision_language_config: Optional[VisionLanguageConfig],
- speculative_config: Optional[SpeculativeConfig],
- ) -> None:
- self.model_config = model_config
- self.cache_config = cache_config
- self.lora_config = lora_config
- self.load_config = load_config
- self.parallel_config = parallel_config
- self.scheduler_config = scheduler_config
- self.device_config = device_config
- self.vision_language_config = vision_language_config
- self.speculative_config = speculative_config
- self._init_executor()
- @abstractmethod
- def _init_executor(self) -> None:
- pass
- @abstractmethod
- def determine_num_available_blocks(self) -> Tuple[int, int]:
- """Determine the number of available blocks for the GPU KV cache and
- swappable CPU KV cache.
- Normally, this should simply delegate to the underlying Worker. Some
- ExecutorBase may require modification of the result, e.g. to ensure the
- selected cache sizes are compatible with all workers.
- Returns a Tuple[num_gpu_blocks, num_cpu_blocks], where num_gpu_blocks
- are blocks that are "active" on the device and can be appended to.
- num_cpu_blocks refers to "swapped" blocks in CPU memory and cannot be
- appended to.
- """
- raise NotImplementedError
- @abstractmethod
- def initialize_cache(self, num_gpu_blocks: int,
- num_cpu_blocks: int) -> None:
- """Initialize the KV cache with the given size in blocks.
- """
- raise NotImplementedError
- @abstractmethod
- def execute_model(
- self,
- execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
- """Executes at least one model step on the given sequences."""
- raise NotImplementedError
- def stop_remote_worker_execution_loop(self) -> None:
- """Releases parallel workers from model loop."""
- return
- @abstractmethod
- def add_lora(self, lora_request: LoRARequest) -> bool:
- raise NotImplementedError
- @abstractmethod
- def remove_lora(self, lora_id: int) -> bool:
- raise NotImplementedError
- @abstractmethod
- def list_loras(self) -> Set[int]:
- raise NotImplementedError
- @abstractmethod
- def check_health(self) -> None:
- """Checks if the executor is healthy. If not, it should raise an
- exception."""
- raise NotImplementedError
- def shutdown(self) -> None:
- """Shutdown the executor."""
- return
- def __del__(self):
- self.shutdown()
- class ExecutorAsyncBase(ExecutorBase):
- @abstractmethod
- async def execute_model_async(
- self,
- execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
- """Executes one model step on the given sequences."""
- raise NotImplementedError
- async def stop_remote_worker_execution_loop_async(self) -> None:
- """Releases parallel workers from model loop."""
- return
- async def check_health_async(self) -> None:
- """Checks if the executor is healthy. If not, it should raise an
- exception."""
- self.check_health()
|