1
0

test_llama.py 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147
  1. from typing import List
  2. import pytest
  3. import ray
  4. import aphrodite
  5. from aphrodite.lora.request import LoRARequest
  6. from .conftest import cleanup
  7. MODEL_PATH = "meta-llama/Llama-2-7b-hf"
  8. def do_sample(llm: aphrodite.LLM, lora_path: str, lora_id: int) -> List[str]:
  9. prompts = [
  10. "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]", # noqa: E501
  11. "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]", # noqa: E501
  12. "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_95 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one mora for a low tone mora with a gloss of /˩okiru/ [òkìɽɯ́]? [/user] [assistant]", # noqa: E501
  13. "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE candidate (people_id VARCHAR, unsure_rate INTEGER); CREATE TABLE people (sex VARCHAR, people_id VARCHAR)\n\n question: which gender got the highest average uncertain ratio. [/user] [assistant]", # noqa: E501
  14. "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_60 (pick INTEGER, former_wnba_team VARCHAR)\n\n question: What pick was a player that previously played for the Minnesota Lynx? [/user] [assistant]", # noqa: E501
  15. "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]" # noqa: E501
  16. ]
  17. sampling_params = aphrodite.SamplingParams(temperature=0,
  18. max_tokens=256,
  19. stop=["[/assistant]"])
  20. outputs = llm.generate(
  21. prompts,
  22. sampling_params,
  23. lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
  24. if lora_id else None)
  25. # Print the outputs.
  26. generated_texts: List[str] = []
  27. for output in outputs:
  28. prompt = output.prompt
  29. generated_text = output.outputs[0].text
  30. generated_texts.append(generated_text)
  31. print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
  32. return generated_texts
  33. @pytest.mark.parametrize("tp_size", [1, 2, 4])
  34. def test_llama_lora(sql_lora_files, tp_size, num_gpus_available):
  35. if num_gpus_available < tp_size:
  36. pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}")
  37. llm = aphrodite.LLM(MODEL_PATH,
  38. enable_lora=True,
  39. max_num_seqs=16,
  40. max_loras=4,
  41. tensor_parallel_size=tp_size)
  42. expected_no_lora_output = [
  43. "\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_75 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_76 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_77 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_78 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user]", # noqa: E501
  44. " Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? ", # noqa: E501
  45. "\n\n answer: 1\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_96 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one mora for a high tone mora with a gloss of /˧kot/ [kòt]? [/user] [assistant]\n\n answer: 2\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_97 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one mora for a high tone mora with a gloss of /˧kot/ [kòt]? [/user] [assistant]\n\n answer: 2\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_98 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one m", # noqa: E501
  46. " Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE candidate (people_id VARCHAR, unsure_rate INTEGER); CREATE TABLE people (sex VARCHAR, people_id VARCHAR)\n\n question: which gender got the highest average uncertain ratio. ", # noqa: E501
  47. " Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_60 (pick INTEGER, former_wnba_team VARCHAR)\n\n question: What pick was a player that previously played for the Minnesota Lynx? ", # noqa: E501
  48. "\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE", # noqa: E501
  49. ]
  50. expected_lora_output = [
  51. " SELECT icao FROM table_name_74 WHERE airport = 'lilongwe international airport' ", # noqa: E501
  52. " SELECT nationality FROM table_name_11 WHERE elector = 'anchero pantaleone' ", # noqa: E501
  53. " SELECT one_mora FROM table_name_95 WHERE gloss = 'low tone mora with a gloss of /˩okiru/' [òkìɽɯ́] AND accented_mora = 'low tone mora with a gloss of /˩okiru/' [òkìɽɯ́] ", # noqa: E501
  54. " SELECT sex FROM people WHERE people_id IN (SELECT people_id FROM candidate GROUP BY sex ORDER BY COUNT(people_id) DESC LIMIT 1) ", # noqa: E501
  55. " SELECT pick FROM table_name_60 WHERE former_wnba_team = 'Minnesota Lynx' ", # noqa: E501
  56. " SELECT womens_doubles FROM table_28138035_4 WHERE mens_singles = 'Werner Schlager' " # noqa: E501
  57. ]
  58. print("lora adapter created")
  59. assert do_sample(llm, sql_lora_files, lora_id=0) == expected_no_lora_output
  60. print("lora 1")
  61. assert do_sample(llm, sql_lora_files, lora_id=1) == expected_lora_output
  62. print("no lora")
  63. assert do_sample(llm, sql_lora_files, lora_id=0) == expected_no_lora_output
  64. print("lora 2")
  65. assert do_sample(llm, sql_lora_files, lora_id=2) == expected_lora_output
  66. print("removing lora")
  67. def test_llama_tensor_parallel_equality(sql_lora_files, num_gpus_available):
  68. if num_gpus_available < 4:
  69. pytest.skip("Not enough GPUs for tensor parallelism 4")
  70. llm_tp1 = aphrodite.LLM(MODEL_PATH,
  71. enable_lora=True,
  72. max_num_seqs=16,
  73. max_loras=4,
  74. tensor_parallel_size=1)
  75. output_tp1 = do_sample(llm_tp1, sql_lora_files, lora_id=1)
  76. del llm_tp1
  77. cleanup()
  78. llm_tp2 = aphrodite.LLM(MODEL_PATH,
  79. enable_lora=True,
  80. max_num_seqs=16,
  81. max_loras=4,
  82. tensor_parallel_size=2)
  83. output_tp2 = do_sample(llm_tp2, sql_lora_files, lora_id=1)
  84. del llm_tp2
  85. cleanup()
  86. assert output_tp1 == output_tp2
  87. llm_tp4 = aphrodite.LLM(MODEL_PATH,
  88. enable_lora=True,
  89. max_num_seqs=16,
  90. max_loras=4,
  91. tensor_parallel_size=4)
  92. output_tp4 = do_sample(llm_tp4, sql_lora_files, lora_id=1)
  93. del llm_tp4
  94. cleanup()
  95. assert output_tp1 == output_tp4
  96. def test_llama_lora_warmup(sql_lora_files):
  97. """Test that the LLM initialization works with a warmup LORA path and
  98. is more conservative"""
  99. @ray.remote(num_gpus=1)
  100. def get_num_gpu_blocks_lora():
  101. llm = aphrodite.LLM(MODEL_PATH, enable_lora=True, max_num_seqs=16)
  102. num_gpu_blocks_lora_warmup = llm.llm_engine.cache_config.num_gpu_blocks
  103. return num_gpu_blocks_lora_warmup
  104. @ray.remote(num_gpus=1)
  105. def get_num_gpu_blocks_no_lora():
  106. llm = aphrodite.LLM(MODEL_PATH, max_num_seqs=16)
  107. num_gpu_blocks_no_lora_warmup = (
  108. llm.llm_engine.cache_config.num_gpu_blocks)
  109. return num_gpu_blocks_no_lora_warmup
  110. num_gpu_blocks_lora_warmup = ray.get(get_num_gpu_blocks_lora.remote())
  111. num_gpu_blocks_no_lora_warmup = ray.get(
  112. get_num_gpu_blocks_no_lora.remote())
  113. assert num_gpu_blocks_lora_warmup < num_gpu_blocks_no_lora_warmup, (
  114. "The warmup with lora should be more "
  115. "conservative than without lora, therefore the number of "
  116. "memory blocks for the KV cache should be "
  117. "less when using lora than when not using lora")