throughput.py 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213
  1. import argparse
  2. import json
  3. import random
  4. import time
  5. from typing import List, Tuple
  6. import torch
  7. from transformers import AutoModelForCausalLM, PreTrainedTokenizerBase
  8. from tqdm import tqdm
  9. from aphrodite import LLM, SamplingParams
  10. from aphrodite.transformers_utils.tokenizer import get_tokenizer
  11. def sample_requests(
  12. dataset_path: str,
  13. num_requests: int,
  14. tokenizer: PreTrainedTokenizerBase,
  15. ) -> List[Tuple[str, int, int]]:
  16. # Load the dataset.
  17. with open(dataset_path) as f:
  18. dataset = json.load(f)
  19. # Filter out the conversations with less than 2 turns.
  20. dataset = [
  21. data for data in dataset
  22. if len(data["conversations"]) >= 2
  23. ]
  24. # Only keep the first two turns of each conversation.
  25. dataset = [
  26. (data["conversations"][0]["value"], data["conversations"][1]["value"])
  27. for data in dataset
  28. ]
  29. # Tokenize the prompts and completions.
  30. prompts = [prompt for prompt, _ in dataset]
  31. prompt_token_ids = tokenizer(prompts).input_ids
  32. completions = [completion for _, completion in dataset]
  33. completion_token_ids = tokenizer(completions).input_ids
  34. tokenized_dataset = []
  35. for i in range(len(dataset)):
  36. output_len = len(completion_token_ids[i])
  37. tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))
  38. # Filter out too long sequences.
  39. filtered_dataset: List[Tuple[str, int, int]] = []
  40. for prompt, prompt_token_ids, output_len in tokenized_dataset:
  41. prompt_len = len(prompt_token_ids)
  42. if prompt_len < 4 or output_len < 4:
  43. # Prune too short sequences.
  44. continue
  45. if prompt_len > 1024 or prompt_len + output_len > 2048:
  46. # Prune too long sequences.
  47. continue
  48. filtered_dataset.append((prompt, prompt_len, output_len))
  49. # Sample the requests.
  50. sampled_requests = random.sample(filtered_dataset, num_requests)
  51. return sampled_requests
  52. def run_aphrodite(
  53. requests: List[Tuple[str, int, int]],
  54. model: str,
  55. tokenizer: str,
  56. tensor_parallel_size: int,
  57. seed: int,
  58. n: int,
  59. use_beam_search: bool,
  60. ) -> float:
  61. llm = LLM(
  62. model=model,
  63. tokenizer=tokenizer,
  64. tensor_parallel_size=tensor_parallel_size,
  65. seed=seed,
  66. )
  67. # Add the requests to the engine.
  68. for prompt, _, output_len in requests:
  69. sampling_params = SamplingParams(
  70. n=n,
  71. temperature=0.0 if use_beam_search else 1.0,
  72. top_p=1.0,
  73. use_beam_search=use_beam_search,
  74. ignore_eos=True,
  75. max_tokens=output_len,
  76. )
  77. # FIXME: Do not use internal method.
  78. llm._add_request(
  79. prompt=prompt,
  80. prompt_token_ids=None,
  81. sampling_params=sampling_params,
  82. )
  83. start = time.time()
  84. # FIXME: Do use internal method.
  85. llm._run_engine(use_tqdm=True)
  86. end = time.time()
  87. return end - start
  88. def run_hf(
  89. requests: List[Tuple[str, int, int]],
  90. model: str,
  91. tokenizer: PreTrainedTokenizerBase,
  92. n: int,
  93. use_beam_search: bool,
  94. max_batch_size: int,
  95. ) -> float:
  96. assert not use_beam_search
  97. llm = AutoModelForCausalLM.from_pretrained(model, torch_dtype=torch.float16)
  98. if llm.config.model_type == "llama":
  99. # To enable padding in the HF backend.
  100. tokenizer.pad_token = tokenizer.eos_token
  101. llm = llm.cuda()
  102. pbar = tqdm(total=len(requests))
  103. start = time.time()
  104. batch: List[str] = []
  105. max_prompt_len = 0
  106. max_output_len = 0
  107. for i in range(len(requests)):
  108. prompt, prompt_len, output_len = requests[i]
  109. # Add the prompt to the batch.
  110. batch.append(prompt)
  111. max_prompt_len = max(max_prompt_len, prompt_len)
  112. max_output_len = max(max_output_len, output_len)
  113. if len(batch) < max_batch_size and i != len(requests) - 1:
  114. # Check if we can add more requests to the batch.
  115. _, next_prompt_len, next_output_len = requests[i + 1]
  116. if (max(max_prompt_len, next_prompt_len) + max(
  117. max_output_len, next_output_len)) <= 2048:
  118. # We can add more requests to the batch.
  119. continue
  120. # Generate the sequences.
  121. input_ids = tokenizer(batch, return_tensors="pt", padding=True).input_ids
  122. llm_outputs = llm.generate(
  123. input_ids=input_ids.cuda(),
  124. do_sample=not use_beam_search,
  125. num_return_sequences=n,
  126. temperature=1.0,
  127. top_p=1.0,
  128. use_cache=True,
  129. max_new_tokens=max_output_len,
  130. )
  131. # Include the decoding time.
  132. tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
  133. pbar.update(len(batch))
  134. # Clear the batch.
  135. batch = []
  136. max_prompt_len = 0
  137. max_output_len = 0
  138. end = time.time()
  139. return end - start
  140. def main(args: argparse.Namespace):
  141. print(args)
  142. random.seed(args.seed)
  143. # Sample the requests.
  144. tokenizer = get_tokenizer(args.tokenizer)
  145. requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
  146. if args.backend == "aphrodite":
  147. elapsed_time = run_aphrodite(
  148. requests, args.model, args.tokenizer, args.tensor_parallel_size,
  149. args.seed, args.n, args.use_beam_search)
  150. elif args.backend == "hf":
  151. assert args.tensor_parallel_size == 1
  152. elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
  153. args.use_beam_search, args.hf_max_batch_size)
  154. else:
  155. raise ValueError(f"Unknown backend: {args.backend}")
  156. total_num_tokens = sum(
  157. prompt_len + output_len
  158. for _, prompt_len, output_len in requests
  159. )
  160. print(f"Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
  161. f"{total_num_tokens / elapsed_time:.2f} tokens/s")
  162. if __name__ == "__main__":
  163. parser = argparse.ArgumentParser(description="Benchmark the throughput.")
  164. parser.add_argument("--backend", type=str, choices=["aphrodite", "hf"],
  165. default="aphrodite")
  166. parser.add_argument("--dataset", type=str, required=True,
  167. help="Path to the dataset.")
  168. parser.add_argument("--model", type=str, default="facebook/opt-125m")
  169. parser.add_argument("--tokenizer", type=str, default=None)
  170. parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
  171. parser.add_argument("--n", type=int, default=1,
  172. help="Number of generated sequences per prompt.")
  173. parser.add_argument("--use-beam-search", action="store_true")
  174. parser.add_argument("--num-prompts", type=int, default=1000,
  175. help="Number of prompts to process.")
  176. parser.add_argument("--seed", type=int, default=0)
  177. parser.add_argument("--hf-max-batch-size", type=int, default=None,
  178. help="Maximum batch size for HF backend.")
  179. args = parser.parse_args()
  180. if args.backend == "aphrodite":
  181. if args.hf_max_batch_size is not None:
  182. raise ValueError("HF max batch size is only for HF backend.")
  183. elif args.backend == "hf":
  184. if args.hf_max_batch_size is None:
  185. raise ValueError("HF max batch size is required for HF backend.")
  186. if args.tokenizer is None:
  187. args.tokenizer = args.model
  188. main(args)