internvl.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502
  1. # adapted from https://huggingface.co/OpenGVLab/InternVL2-4B/blob/main/modeling_internvl_chat.py
  2. # --------------------------------------------------------
  3. # InternVL
  4. # Copyright (c) 2023 OpenGVLab
  5. # Licensed under The MIT License [see LICENSE for details]
  6. # --------------------------------------------------------
  7. import itertools
  8. from typing import (Iterable, List, Literal, Mapping, Optional, Tuple,
  9. TypedDict, Union)
  10. import torch
  11. import torch.nn as nn
  12. import torchvision.transforms as T
  13. from PIL import Image
  14. from transformers import PretrainedConfig
  15. from aphrodite.attention import AttentionMetadata
  16. from aphrodite.common.config import CacheConfig, MultiModalConfig
  17. from aphrodite.common.sequence import IntermediateTensors
  18. from aphrodite.inputs import INPUT_REGISTRY, InputContext, LLMInputs
  19. from aphrodite.modeling.layers.sampler import SamplerOutput
  20. from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
  21. from aphrodite.modeling.models.intern_vit import InternVisionModel
  22. from aphrodite.modeling.sampling_metadata import SamplingMetadata
  23. from aphrodite.multimodal import MULTIMODAL_REGISTRY
  24. from aphrodite.multimodal.base import MultiModalInputs
  25. from aphrodite.multimodal.utils import cached_get_tokenizer
  26. from aphrodite.quantization import QuantizationConfig
  27. from .clip import (dummy_image_for_clip, dummy_seq_data_for_clip,
  28. get_clip_num_patches)
  29. from .interfaces import SupportsMultiModal
  30. from .utils import (filter_weights, flatten_bn,
  31. init_aphrodite_registered_model,
  32. merge_multimodal_embeddings)
  33. IMG_START = '<img>'
  34. IMG_END = '</img>'
  35. IMG_CONTEXT = '<IMG_CONTEXT>'
  36. IMAGENET_MEAN = (0.485, 0.456, 0.406)
  37. IMAGENET_STD = (0.229, 0.224, 0.225)
  38. class InternVLImagePixelInputs(TypedDict):
  39. type: Literal["pixel_values"]
  40. data: torch.Tensor
  41. """
  42. Shape:
  43. `(batch_size * num_images * (1 + num_patches), num_channels, height, width)`
  44. """
  45. class InternVLImageEmbeddingInputs(TypedDict):
  46. type: Literal["image_embeds"]
  47. data: torch.Tensor
  48. """Shape: `(batch_size * num_images, image_feature_size, hidden_size)`
  49. `hidden_size` must match the hidden size of language model backbone.
  50. """
  51. InternVLImageInputs = Union[InternVLImagePixelInputs,
  52. InternVLImageEmbeddingInputs]
  53. # copied from https://huggingface.co/OpenGVLab/InternVL2-1B
  54. def build_transform(input_size):
  55. MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
  56. transform = T.Compose([
  57. T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
  58. T.Resize((input_size, input_size),
  59. interpolation=T.InterpolationMode.BICUBIC),
  60. T.ToTensor(),
  61. T.Normalize(mean=MEAN, std=STD)
  62. ])
  63. return transform
  64. # copied from https://huggingface.co/OpenGVLab/InternVL2-1B
  65. def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height,
  66. image_size):
  67. best_ratio_diff = float('inf')
  68. best_ratio = (1, 1)
  69. area = width * height
  70. for ratio in target_ratios:
  71. target_aspect_ratio = ratio[0] / ratio[1]
  72. ratio_diff = abs(aspect_ratio - target_aspect_ratio)
  73. if ratio_diff < best_ratio_diff:
  74. best_ratio_diff = ratio_diff
  75. best_ratio = ratio
  76. elif ratio_diff == best_ratio_diff:
  77. if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
  78. best_ratio = ratio
  79. return best_ratio
  80. def calculate_num_blocks(orig_width: int, orig_height: int,
  81. min_num: int, max_num: int,
  82. image_size: int) -> Tuple[int, int, int]:
  83. aspect_ratio = orig_width / orig_height
  84. # calculate the existing image aspect ratio
  85. target_ratios = set((i, j) for n in range(min_num, max_num + 1)
  86. for i in range(1, n + 1) for j in range(1, n + 1)
  87. if i * j <= max_num and i * j >= min_num)
  88. target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
  89. # find the closest aspect ratio to the target
  90. target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio,
  91. target_ratios, orig_width,
  92. orig_height, image_size)
  93. # calculate the target width and height
  94. target_width = image_size * target_aspect_ratio[0]
  95. target_height = image_size * target_aspect_ratio[1]
  96. blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
  97. return blocks, target_width, target_height
  98. # adapted from https://huggingface.co/OpenGVLab/InternVL2-1B
  99. def dynamic_preprocess(image: Image.Image, min_num: int,
  100. max_num: int, image_size: int,
  101. use_thumbnail: int) -> List[Image.Image]:
  102. orig_width, orig_height = image.size
  103. blocks, target_width, target_height = calculate_num_blocks(
  104. orig_width, orig_height, min_num, max_num, image_size)
  105. # resize the image
  106. resized_img = image.resize((target_width, target_height))
  107. processed_images = []
  108. for i in range(blocks):
  109. box = ((i % (target_width // image_size)) * image_size,
  110. (i // (target_width // image_size)) * image_size,
  111. ((i % (target_width // image_size)) + 1) * image_size,
  112. ((i // (target_width // image_size)) + 1) * image_size)
  113. # split the image
  114. split_img = resized_img.crop(box)
  115. processed_images.append(split_img)
  116. assert len(processed_images) == blocks
  117. if use_thumbnail and len(processed_images) != 1:
  118. thumbnail_img = image.resize((image_size, image_size))
  119. processed_images.append(thumbnail_img)
  120. return processed_images
  121. # adapted from https://huggingface.co/OpenGVLab/InternVL2-1B
  122. def image_to_pixel_values(image: Image.Image, input_size: int, min_num: int,
  123. max_num: int, use_thumbnail: bool) -> torch.Tensor:
  124. transform = build_transform(input_size=input_size)
  125. images = dynamic_preprocess(image,
  126. min_num=min_num,
  127. max_num=max_num,
  128. image_size=input_size,
  129. use_thumbnail=use_thumbnail)
  130. pixel_values = [transform(image) for image in images]
  131. pixel_values = torch.stack(pixel_values)
  132. return pixel_values
  133. def get_internvl_num_patches(image_size: int, patch_size: int,
  134. downsample_ratio: float):
  135. return int(
  136. get_clip_num_patches(image_size=image_size, patch_size=patch_size) *
  137. (downsample_ratio**2))
  138. def get_max_internvl_image_tokens(ctx: InputContext):
  139. hf_config = ctx.get_hf_config(PretrainedConfig)
  140. vision_config = hf_config.vision_config
  141. use_thumbnail = hf_config.use_thumbnail
  142. max_dynamic_patch = hf_config.max_dynamic_patch
  143. if use_thumbnail:
  144. max_dynamic_patch += 1
  145. downsample_ratio = hf_config.downsample_ratio
  146. image_size = vision_config.image_size
  147. patch_size = vision_config.patch_size
  148. num_patches = get_internvl_num_patches(image_size, patch_size,
  149. downsample_ratio)
  150. return num_patches * max_dynamic_patch
  151. def input_processor_for_internvl(ctx: InputContext, llm_inputs: LLMInputs):
  152. multi_modal_data = llm_inputs.get("multi_modal_data")
  153. if multi_modal_data is None or "image" not in multi_modal_data:
  154. return llm_inputs
  155. model_config = ctx.model_config
  156. hf_config = ctx.get_hf_config(PretrainedConfig)
  157. vision_config = hf_config.vision_config
  158. image_size = vision_config.image_size
  159. patch_size = vision_config.patch_size
  160. downsample_ratio = hf_config.downsample_ratio
  161. num_patches = get_internvl_num_patches(image_size, patch_size,
  162. downsample_ratio)
  163. image_data = multi_modal_data["image"]
  164. if isinstance(image_data, Image.Image):
  165. width, height = image_data.size
  166. min_num = hf_config.min_dynamic_patch
  167. max_num = hf_config.max_dynamic_patch
  168. num_blocks, _, _ = calculate_num_blocks(width, height, min_num,
  169. max_num, image_size)
  170. # add thumbnail image if num_blocks > 1
  171. if hf_config.use_thumbnail and num_blocks > 1:
  172. num_blocks += 1
  173. image_feature_size = num_blocks * num_patches
  174. elif isinstance(image_data, torch.Tensor):
  175. image_feature_size = image_data.shape[0]
  176. else:
  177. raise TypeError(f"Invalid image type: {type(image_data)}")
  178. tokenizer = cached_get_tokenizer(model_config.tokenizer,
  179. trust_remote_code=True)
  180. prompt = llm_inputs.get("prompt")
  181. prompt_token_ids = llm_inputs["prompt_token_ids"]
  182. if prompt is None:
  183. prompt = tokenizer.decode(prompt_token_ids)
  184. image_prompt = IMG_START + IMG_CONTEXT * image_feature_size + IMG_END
  185. new_prompt = prompt.replace('<image>', image_prompt, 1)
  186. new_prompt_token_ids = tokenizer.encode(new_prompt)
  187. return LLMInputs(prompt=prompt,
  188. prompt_token_ids=new_prompt_token_ids,
  189. multi_modal_data=multi_modal_data)
  190. def input_mapper_for_internvl(ctx: InputContext, data: object):
  191. hf_config = ctx.get_hf_config()
  192. use_thumbnail = hf_config.use_thumbnail
  193. min_num = hf_config.min_dynamic_patch
  194. max_num = hf_config.max_dynamic_patch
  195. image_size = hf_config.vision_config.image_size
  196. if isinstance(data, Image.Image):
  197. data = image_to_pixel_values(data,
  198. image_size,
  199. min_num,
  200. max_num,
  201. use_thumbnail=use_thumbnail)
  202. # Add an N dimension for number of images per prompt (currently 1).
  203. data = data.unsqueeze(0)
  204. model_config = ctx.model_config
  205. tokenizer = cached_get_tokenizer(model_config.tokenizer,
  206. trust_remote_code=True)
  207. image_token_id = tokenizer.encode(IMG_CONTEXT,
  208. add_special_tokens=False,
  209. return_tensors="pt")[0]
  210. return MultiModalInputs({
  211. "pixel_values": data,
  212. "image_token_id": image_token_id
  213. })
  214. def dummy_data_for_internvl(ctx: InputContext, seq_len: int,
  215. mm_counts: Mapping[str, int]):
  216. num_images = mm_counts["image"]
  217. image_feature_size = get_max_internvl_image_tokens(ctx)
  218. model_config = ctx.model_config
  219. hf_config = ctx.get_hf_config()
  220. vision_config = hf_config.vision_config
  221. tokenizer = cached_get_tokenizer(model_config.tokenizer,
  222. trust_remote_code=True)
  223. seq_data = dummy_seq_data_for_clip(
  224. vision_config,
  225. seq_len,
  226. num_images,
  227. image_token_id=tokenizer.encode(IMG_CONTEXT,
  228. add_special_tokens=False)[0],
  229. image_feature_size_override=image_feature_size,
  230. )
  231. image_size = vision_config.image_size
  232. min_num = hf_config.min_dynamic_patch
  233. max_num = hf_config.max_dynamic_patch
  234. max_image_width = max_num * image_size
  235. max_image_height = min_num * image_size
  236. mm_data = dummy_image_for_clip(
  237. vision_config,
  238. num_images,
  239. image_width_override=max_image_width,
  240. image_height_override=max_image_height,
  241. )
  242. return seq_data, mm_data
  243. @MULTIMODAL_REGISTRY.register_image_input_mapper(input_mapper_for_internvl)
  244. @MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_internvl_image_tokens)
  245. @INPUT_REGISTRY.register_dummy_data(dummy_data_for_internvl)
  246. @INPUT_REGISTRY.register_input_processor(input_processor_for_internvl)
  247. class InternVLChatModel(nn.Module, SupportsMultiModal):
  248. def __init__(self,
  249. config: PretrainedConfig,
  250. multimodal_config: MultiModalConfig,
  251. cache_config: Optional[CacheConfig] = None,
  252. quant_config: Optional[QuantizationConfig] = None) -> None:
  253. super().__init__()
  254. self.config = config
  255. self.multimodal_config = multimodal_config
  256. image_size = config.force_image_size or config.vision_config.image_size
  257. patch_size = config.vision_config.patch_size
  258. self.patch_size = patch_size
  259. self.select_layer = config.select_layer
  260. self.num_image_token = int(
  261. (image_size // patch_size)**2 * (config.downsample_ratio**2))
  262. self.downsample_ratio = config.downsample_ratio
  263. self.ps_version = config.ps_version
  264. vision_feature_layer = self.select_layer
  265. if vision_feature_layer < 0:
  266. num_hidden_layers = config.vision_config.num_hidden_layers \
  267. + vision_feature_layer + 1
  268. else:
  269. num_hidden_layers = vision_feature_layer + 1
  270. self.vision_model = InternVisionModel(
  271. config.vision_config, num_hidden_layers_override=num_hidden_layers)
  272. self.language_model = init_aphrodite_registered_model(
  273. config.text_config, cache_config, quant_config)
  274. vit_hidden_size = config.vision_config.hidden_size
  275. llm_hidden_size = config.text_config.hidden_size
  276. self.mlp1 = nn.Sequential(
  277. nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio)**2),
  278. nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio)**2,
  279. llm_hidden_size), nn.GELU(),
  280. nn.Linear(llm_hidden_size, llm_hidden_size))
  281. self.img_context_token_id = None
  282. self.make_empty_intermediate_tensors = (
  283. self.language_model.make_empty_intermediate_tensors)
  284. def pixel_shuffle(self, x, scale_factor=0.5):
  285. n, w, h, c = x.size()
  286. # N, W, H, C --> N, W, H * scale, C // scale
  287. x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
  288. # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
  289. x = x.permute(0, 2, 1, 3).contiguous()
  290. x = x.view(n, int(h * scale_factor), int(w * scale_factor),
  291. int(c / (scale_factor * scale_factor)))
  292. if self.ps_version == 'v1':
  293. pass
  294. else:
  295. x = x.permute(0, 2, 1, 3).contiguous()
  296. return x
  297. def extract_feature(self, pixel_values: torch.Tensor) -> torch.Tensor:
  298. vit_embeds = self.vision_model(pixel_values=pixel_values)
  299. vit_embeds = vit_embeds[:, 1:, :]
  300. h = w = int(vit_embeds.shape[1]**0.5)
  301. vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
  302. vit_embeds = self.pixel_shuffle(vit_embeds,
  303. scale_factor=self.downsample_ratio)
  304. vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1,
  305. vit_embeds.shape[-1])
  306. vit_embeds = self.mlp1(vit_embeds)
  307. return vit_embeds
  308. def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
  309. h = w = self.config.vision_config.image_size
  310. expected_dims = (3, h, w)
  311. def _validate_shape(d: torch.Tensor):
  312. actual_dims = tuple(d.shape)
  313. if actual_dims != expected_dims:
  314. expected_expr = str(expected_dims)
  315. raise ValueError(
  316. "The expected shape of pixel values per image per batch "
  317. f" per patch is {expected_expr}. "
  318. f"You supplied {tuple(d.shape)}.")
  319. for d in data:
  320. _validate_shape(d)
  321. return data
  322. def _parse_and_validate_image_input(
  323. self, **kwargs: object) -> Optional[InternVLImageInputs]:
  324. pixel_values = kwargs.pop("pixel_values", None)
  325. image_token_id = kwargs.pop("image_token_id", None)
  326. image_embeds = kwargs.pop("image_embeds", None)
  327. if pixel_values is None and image_embeds is None:
  328. return None
  329. if image_embeds is not None:
  330. if not isinstance(image_embeds, torch.Tensor):
  331. raise ValueError("Incorrect type of image embeddings. "
  332. f"Got type: {type(image_embeds)}")
  333. return InternVLImageEmbeddingInputs(
  334. type="image_embeds",
  335. data=flatten_bn(image_embeds),
  336. )
  337. self.img_context_token_id = image_token_id[0]
  338. if pixel_values is not None:
  339. if not isinstance(pixel_values, (torch.Tensor, list)):
  340. raise ValueError("Incorrect type of pixel values. "
  341. f"Got type: {type(pixel_values)}")
  342. return InternVLImagePixelInputs(
  343. type="pixel_values",
  344. data=self._validate_pixel_values(
  345. flatten_bn(pixel_values, concat=True).flatten(0, 1)),
  346. )
  347. raise AssertionError("This line should be unreachable.")
  348. def _process_image_input(
  349. self,
  350. image_input: InternVLImageInputs,
  351. ) -> torch.Tensor:
  352. if image_input["type"] == "image_embeds":
  353. return image_input["data"]
  354. assert self.vision_model is not None
  355. image_embeds = self.extract_feature(image_input["data"])
  356. return image_embeds
  357. def forward(
  358. self,
  359. input_ids: torch.Tensor,
  360. positions: torch.Tensor,
  361. kv_caches: List[torch.Tensor],
  362. attn_metadata: AttentionMetadata,
  363. intermediate_tensors: Optional[IntermediateTensors] = None,
  364. **kwargs: object,
  365. ) -> SamplerOutput:
  366. image_input = self._parse_and_validate_image_input(**kwargs)
  367. if image_input is not None:
  368. inputs_embeds = self.language_model.model.get_input_embeddings(
  369. input_ids)
  370. vision_embeddings = self._process_image_input(image_input)
  371. inputs_embeds = merge_multimodal_embeddings(
  372. input_ids, inputs_embeds, vision_embeddings,
  373. self.img_context_token_id)
  374. input_ids = None
  375. else:
  376. inputs_embeds = None
  377. hidden_states = self.language_model.model(input_ids,
  378. positions,
  379. kv_caches,
  380. attn_metadata,
  381. intermediate_tensors,
  382. inputs_embeds=inputs_embeds)
  383. return hidden_states
  384. def compute_logits(
  385. self,
  386. hidden_states: torch.Tensor,
  387. sampling_metadata: SamplingMetadata,
  388. ) -> Optional[torch.Tensor]:
  389. return self.language_model.compute_logits(hidden_states,
  390. sampling_metadata)
  391. def sample(
  392. self,
  393. logits: torch.Tensor,
  394. sampling_metadata: SamplingMetadata,
  395. ) -> Optional[SamplerOutput]:
  396. return self.language_model.sample(logits, sampling_metadata)
  397. def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
  398. # prepare weight iterators for components
  399. vit_weights, mlp_weights, llm_weights = itertools.tee(weights, 3)
  400. # load vision encoder
  401. vit_weights = filter_weights(vit_weights, "vision_model")
  402. self.vision_model.load_weights(vit_weights)
  403. # load mlp projector
  404. mlp_weights = filter_weights(mlp_weights, "mlp1")
  405. mlp_params_dict = dict(self.mlp1.named_parameters())
  406. for name, loaded_weight in mlp_weights:
  407. param = mlp_params_dict[name]
  408. weight_loader = getattr(param, "weight_loader",
  409. default_weight_loader)
  410. weight_loader(param, loaded_weight)
  411. # load llm backbone
  412. llm_weights = filter_weights(llm_weights, "language_model")
  413. self.language_model.load_weights(llm_weights)