PygmalionAI's large-scale inference engine
pygmalion.chat

It is designed to serve as the inference endpoint for the PygmalionAI website, and to allow serving the Pygmalion models to a large number of users with blazing fast speeds (thanks to vLLM's Paged Attention).

AlpinDale 7ca63930c8 support deepseek_v3 model vor 4 Wochen
.github 304e1e5a8a core: dump model runner inputs during crash (#1023) vor 4 Wochen
aphrodite 7ca63930c8 support deepseek_v3 model vor 4 Wochen
assets b3df2351c8 readme: update with bsz1 graph vor 10 Monaten
cmake f2b6dc3872 cpu: add support for W8A8 quantization via compressed-tensor (#1017) vor 4 Wochen
docker f1d0b77c92 [0.6.0] Release Candidate (#481) vor 4 Monaten
docs 3bb0f07461 chore: rename `task_handler` to `worker` (#985) vor 1 Monat
examples 411ac4f405 vlm: add support for Qwen2-VL model (#1015) vor 4 Wochen
kernels 7ca63930c8 support deepseek_v3 model vor 4 Wochen
patches eee3cf5dab fix: make AMD usable (#775) vor 3 Monaten
tests cec4da1dab quants: support w8a8 fp8 block-wise quantization from DS3 vor 4 Wochen
.clang-format f1d0b77c92 [0.6.0] Release Candidate (#481) vor 4 Monaten
.dockerignore f1d0b77c92 [0.6.0] Release Candidate (#481) vor 4 Monaten
.gitignore 93bc863591 feat: Machete Kernels for Hopper GPUs (#842) vor 1 Monat
CMakeLists.txt 51d24fc7c0 build: shallow clone cutlass 3.5.1 tag (#1010) vor 1 Monat
CODE_OF_CONDUCT.md e7ea38f243 chore: add contribution guidelines + Code of Conduct (#507) vor 7 Monaten
CONTRIBUTING.md e7ea38f243 chore: add contribution guidelines + Code of Conduct (#507) vor 7 Monaten
Dockerfile be59e30139 vlm: add support for video modality + llava next video (#1014) vor 1 Monat
Dockerfile.cpu f2b6dc3872 cpu: add support for W8A8 quantization via compressed-tensor (#1017) vor 4 Wochen
Dockerfile.neuron be59e30139 vlm: add support for video modality + llava next video (#1014) vor 1 Monat
Dockerfile.openvino be59e30139 vlm: add support for video modality + llava next video (#1014) vor 1 Monat
Dockerfile.ppc64le be59e30139 vlm: add support for video modality + llava next video (#1014) vor 1 Monat
Dockerfile.rocm 4d781b22d3 docker: apply AMD patch in the dockerfile (#777) vor 3 Monaten
Dockerfile.tpu be59e30139 vlm: add support for video modality + llava next video (#1014) vor 1 Monat
Dockerfile.xpu be59e30139 vlm: add support for video modality + llava next video (#1014) vor 1 Monat
LICENSE 5adcb33e14 Revert license back to AGPLv3 (#38) vor 1 Jahr
MANIFEST.in a8ff25679f chore: use `ray[adag]` dep instead of cuda (#997) vor 1 Monat
README.md 9fd2bfa02e readme: fix paged attention hyperlink (#876) vor 1 Monat
amdpatch.sh 4f9fea4c4d fix: ROCm build (#817) vor 1 Monat
build_and_upload_docker.sh 6e25b03f25 ci: docker build and upload script vor 2 Monaten
build_wheel.sh f1d0b77c92 [0.6.0] Release Candidate (#481) vor 4 Monaten
config.yaml f1d0b77c92 [0.6.0] Release Candidate (#481) vor 4 Monaten
env.py 5dd0145414 chore: update the env.py script and the bug report template (#662) vor 4 Monaten
environment.yaml f1d0b77c92 [0.6.0] Release Candidate (#481) vor 4 Monaten
formatting.ps1 f98e7b2f8c feat: add HQQ quantization support (#795) vor 2 Monaten
formatting.sh f1d0b77c92 [0.6.0] Release Candidate (#481) vor 4 Monaten
install_windows.ps1 f0e00f1b43 ci: bump to 0.6.3.post1 (#801) vor 2 Monaten
mypy.ini 9d81716bfd [v0.5.3] Release Candidate (#388) vor 8 Monaten
pyproject.toml c6c91edab7 ci: update & overhaul test units (#769) vor 2 Monaten
pytest.ini 132aa2abe4 spec decode: add support for EAGLE (#899) vor 1 Monat
requirements-build.txt 82eabb6aa7 build: add jinja2 to requirements file (#862) vor 1 Monat
requirements-common.txt 411ac4f405 vlm: add support for Qwen2-VL model (#1015) vor 4 Wochen
requirements-cpu.txt f1d0b77c92 [0.6.0] Release Candidate (#481) vor 4 Monaten
requirements-cuda.txt 0256ed236b feat: windows support (#790) vor 2 Monaten
requirements-dev.txt f1d0b77c92 [0.6.0] Release Candidate (#481) vor 4 Monaten
requirements-lint.txt 62111fab17 feat: allow serving encoder-decoder models in the API server (#664) vor 4 Monaten
requirements-neuron.txt 9d81716bfd [v0.5.3] Release Candidate (#388) vor 8 Monaten
requirements-openvino.txt f1d0b77c92 [0.6.0] Release Candidate (#481) vor 4 Monaten
requirements-rocm.txt eee3cf5dab fix: make AMD usable (#775) vor 3 Monaten
requirements-test.txt 8d5d87e687 vlm: support multiple images for qwen-vl (#1031) vor 4 Wochen
requirements-tpu.txt 61103b92d4 tpu: support single and multi-host TPUs on GKE and RayServe (#970) vor 1 Monat
requirements-xpu.txt f1d0b77c92 [0.6.0] Release Candidate (#481) vor 4 Monaten
runtime.sh cbe37e8b18 fix: speed up cuda home detection (#288) vor 10 Monaten
setup.py ff4b7236d5 build: fix invalid path for envs.py in setup (#894) vor 1 Monat
update-runtime.sh f1d0b77c92 [0.6.0] Release Candidate (#481) vor 4 Monaten

README.md

Breathing Life into Language

aphrodite

Aphrodite is the official backend engine for PygmalionAI. It is designed to serve as the inference endpoint for the PygmalionAI website, and to allow serving Hugging Face-compatible models to a large number of users with blazing fast speeds (thanks to vLLM's Paged Attention).

Aphrodite builds upon and integrates the exceptional work from various projects.

The compute necessary for Aphrodite's development is provided by Arc Compute.

🔥 News

(09/2024) v0.6.1 is here. You can now load FP16 models in FP2 to FP7 quant formats, to achieve extremely high throughput and save on memory.

(09/2024) v0.6.0 is released, with huge throughput improvements, many new quant formats (including fp8 and llm-compressor), asymmetric tensor parallel, pipeline parallel and more! Please check out the exhaustive documentation for the User and Developer guides.

Features

  • Continuous Batching
  • Efficient K/V management with PagedAttention from vLLM
  • Optimized CUDA kernels for improved inference
  • Quantization support via AQLM, AWQ, Bitsandbytes, GGUF, GPTQ, QuIP#, Smoothquant+, SqueezeLLM, Marlin, FP2-FP12
  • Distributed inference
  • 8-bit KV Cache for higher context lengths and throughput, at both FP8 E5M3 and E4M3 formats.

Quickstart

Install the engine:

pip install -U aphrodite-engine

Then launch a model:

aphrodite run meta-llama/Meta-Llama-3.1-8B-Instruct

This will create a OpenAI-compatible API server that can be accessed at port 2242 of the localhost. You can plug in the API into a UI that supports OpenAI, such as SillyTavern.

Please refer to the documentation for the full list of arguments and flags you can pass to the engine.

You can play around with the engine in the demo here:

Open In Colab

Docker

Additionally, we provide a Docker image for easy deployment. Here's a basic command to get you started:

docker run --runtime nvidia --gpus all \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    #--env "CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7" \
    -p 2242:2242 \
    --ipc=host \
    alpindale/aphrodite-openai:latest \
    --model NousResearch/Meta-Llama-3.1-8B-Instruct \
    --tensor-parallel-size 8 \
    --api-keys "sk-empty"

This will pull the Aphrodite Engine image (~8GiB download), and launch the engine with the Llama-3.1-8B-Instruct model at port 2242.

Requirements

  • Operating System: Linux (or WSL for Windows)
  • Python: 3.8 to 3.12

For windows users, it's recommended to use tabbyAPI instead, if you do not need batching support.

Build Requirements:

  • CUDA >= 11

For supported devices, see here. Generally speaking, all semi-modern GPUs are supported - down to Pascal (GTX 10xx, P40, etc.) We also support AMD GPUs, Intel CPUs and GPUs, Google TPU, and AWS Inferentia.

Notes

  1. By design, Aphrodite takes up 90% of your GPU's VRAM. If you're not serving an LLM at scale, you may want to limit the amount of memory it takes up. You can do this in the API example by launching the server with the --gpu-memory-utilization 0.6 (0.6 means 60%).

  2. You can view the full list of commands by running aphrodite run --help.

Acknowledgements

Aphrodite Engine would have not been possible without the phenomenal work of other open-source projects. Credits go to:

Contributing

Everyone is welcome to contribute. You can support the project by opening Pull Requests for new features, fixes, or general UX improvements.