123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- from typing import List, Optional, Tuple
- import pytest
- from transformers import AutoModelForVision2Seq, AutoTokenizer
- from aphrodite.common.sequence import SampleLogprobs
- from aphrodite.multimodal.utils import rescale_image_size
- from ..conftest import IMAGE_ASSETS
- from .utils import check_logprobs_close
- pytestmark = pytest.mark.vlm
- HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
- "stop_sign":
- "Question: What's the content of the image? Answer:",
- "cherry_blossom":
- "Question: What is the season? Answer:",
- })
- def aphrodite_to_hf_output(aphrodite_output: Tuple[List[int], str,
- Optional[SampleLogprobs]],
- model: str):
- """Sanitize aphrodite output to be comparable with hf output."""
- _, output_str, out_logprobs = aphrodite_output
- hf_output_str = output_str + "\n"
- tokenizer = AutoTokenizer.from_pretrained(model)
- hf_output_ids = tokenizer.encode(hf_output_str)
- assert hf_output_ids[0] == tokenizer.bos_token_id
- hf_output_ids = hf_output_ids[1:]
- return hf_output_ids, hf_output_str, out_logprobs
- @pytest.mark.parametrize("model", ["Salesforce/blip2-opt-2.7b"])
- @pytest.mark.parametrize(
- "size_factors",
- [
- # No image
- [],
- # Single-scale
- [1.0],
- # Single-scale, batched
- [1.0, 1.0, 1.0],
- # Multi-scale
- [0.25, 0.5, 1.0],
- ],
- )
- @pytest.mark.parametrize("dtype", ["half"])
- @pytest.mark.parametrize("max_tokens", [128])
- @pytest.mark.parametrize("num_logprobs", [5])
- def test_models(hf_runner, aphrodite_runner, image_assets, model, size_factors,
- dtype: str, max_tokens: int, num_logprobs: int) -> None:
- """Inference result should be the same between hf and aphrodite.
- All the image fixtures for the test is under tests/images.
- For huggingface runner, we provide the PIL images as input.
- For aphrodite runner, we provide MultiModalData objects and corresponding
- MultiModalConfig as input.
- Note, the text input is also adjusted to abide by aphrodite contract.
- The text output is sanitized to be able to compare with hf.
- """
- images = [asset.pil_image for asset in image_assets]
- inputs_per_image = [(
- [prompt for _ in size_factors],
- [rescale_image_size(image, factor) for factor in size_factors],
- ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
- # max_model_len should be greater than image_feature_size
- with aphrodite_runner(model, dtype=dtype,
- enforce_eager=True) as aphrodite_model:
- aphrodite_outputs_per_image = [
- aphrodite_model.generate_greedy_logprobs(prompts,
- max_tokens,
- num_logprobs=num_logprobs,
- images=images)
- for prompts, images in inputs_per_image
- ]
- with hf_runner(model, dtype=dtype,
- auto_cls=AutoModelForVision2Seq) as hf_model:
- hf_outputs_per_image = [
- hf_model.generate_greedy_logprobs_limit(prompts,
- max_tokens,
- num_logprobs=num_logprobs,
- images=images)
- for prompts, images in inputs_per_image
- ]
- for hf_outputs, aphrodite_outputs in zip(hf_outputs_per_image,
- aphrodite_outputs_per_image):
- check_logprobs_close(
- outputs_0_lst=hf_outputs,
- outputs_1_lst=[
- aphrodite_to_hf_output(aphrodite_output, model)
- for aphrodite_output in aphrodite_outputs
- ],
- name_0="hf",
- name_1="aphrodite",
- )
|