123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543 |
- #include "cache.h"
- #include "cuda_utils.h"
- #include "ops.h"
- #include "core/registration.h"
- #include "quantization/quant_ops.h"
- #include <torch/library.h>
- // Note on op signatures:
- // The X_meta signatures are for the meta functions corresponding to op X.
- // They must be kept in sync with the signature for X. Generally, only
- // functions that return Tensors require a meta function.
- //
- // See the following links for detailed docs on op registration and function
- // schemas.
- // https://docs.google.com/document/d/1_W62p8WJOQQUzPsJYa7s701JXt0qf2OfLub2sbkHOaU/edit#heading=h.ptttacy8y1u9
- // https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/README.md#annotations
- TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
- // Aphrodite custom ops
- // Attention ops
- // Compute the attention between an input query and the cached
- // keys/values using PagedAttention.
- ops.def(
- "paged_attention_v1("
- " Tensor! out, Tensor query, Tensor key_cache,"
- " Tensor value_cache, int num_kv_heads, float scale,"
- " Tensor block_tables, Tensor seq_lens, int block_size,"
- " int max_seq_len, Tensor? alibi_slopes,"
- " str kv_cache_dtype, float k_scale, float v_scale,"
- " int tp_rank, int blocksparse_local_blocks,"
- " int blocksparse_vert_stride, int blocksparse_block_size,"
- " int blocksparse_head_sliding_step) -> ()");
- ops.impl("paged_attention_v1", torch::kCUDA, &paged_attention_v1);
- // PagedAttention V2.
- ops.def(
- "paged_attention_v2("
- " Tensor! out, Tensor! exp_sums, Tensor! max_logits,"
- " Tensor! tmp_out, Tensor query, Tensor key_cache,"
- " Tensor value_cache, int num_kv_heads, float scale,"
- " Tensor block_tables, Tensor seq_lens, int block_size,"
- " int max_seq_len, Tensor? alibi_slopes,"
- " str kv_cache_dtype, float k_scale, float v_scale,"
- " int tp_rank, int blocksparse_local_blocks,"
- " int blocksparse_vert_stride, int blocksparse_block_size,"
- " int blocksparse_head_sliding_step) -> ()");
- ops.impl("paged_attention_v2", torch::kCUDA, &paged_attention_v2);
- // Activation ops
- // Activation function used in SwiGLU.
- ops.def("silu_and_mul(Tensor! out, Tensor input) -> ()");
- ops.impl("silu_and_mul", torch::kCUDA, &silu_and_mul);
- // Activation function used in GeGLU with `none` approximation.
- ops.def("gelu_and_mul(Tensor! out, Tensor input) -> ()");
- ops.impl("gelu_and_mul", torch::kCUDA, &gelu_and_mul);
- // Activation function used in GeGLU with `tanh` approximation.
- ops.def("gelu_tanh_and_mul(Tensor! out, Tensor input) -> ()");
- ops.impl("gelu_tanh_and_mul", torch::kCUDA, &gelu_tanh_and_mul);
- // GELU implementation used in GPT-2.
- ops.def("gelu_new(Tensor! out, Tensor input) -> ()");
- ops.impl("gelu_new", torch::kCUDA, &gelu_new);
- // Approximate GELU implementation.
- ops.def("gelu_fast(Tensor! out, Tensor input) -> ()");
- ops.impl("gelu_fast", torch::kCUDA, &gelu_fast);
- // Quick GELU implementation.
- ops.def("gelu_quick(Tensor! out, Tensor input) -> ()");
- ops.impl("gelu_quick", torch::kCUDA, &gelu_quick);
- // prepare_inputs advance_step
- ops.def(
- "advance_step_flashattn(int num_seqs, int num_queries, int block_size, "
- "Tensor! input_tokens, Tensor sampled_token_ids, "
- "Tensor! input_positions, Tensor! seq_lens, Tensor! slot_mapping, "
- "Tensor block_tables) -> ()");
- ops.impl("advance_step_flashattn", torch::kCUDA, &advance_step_flashattn);
- ops.def(
- "advance_step_flashinfer("
- " int num_seqs, int num_queries, int block_size,"
- " Tensor! input_tokens, Tensor sampled_token_ids,"
- " Tensor! input_positions, Tensor! seq_lens, Tensor! slot_mapping,"
- " Tensor block_tables, Tensor! paged_kv_indices,"
- " Tensor! paged_kv_indptr, Tensor! paged_kv_last_page_len,"
- " Tensor! block_table_bounds"
- ") -> ()");
- ops.impl("advance_step_flashinfer", torch::kCUDA, &advance_step_flashinfer);
- // Layernorm
- // Apply Root Mean Square (RMS) Normalization to the input tensor.
- ops.def(
- "rms_norm(Tensor! out, Tensor input, Tensor weight, float epsilon) -> "
- "()");
- ops.impl("rms_norm", torch::kCUDA, &rms_norm);
- // In-place fused Add and RMS Normalization.
- ops.def(
- "fused_add_rms_norm(Tensor! input, Tensor! residual, Tensor weight, "
- "float epsilon) -> ()");
- ops.impl("fused_add_rms_norm", torch::kCUDA, &fused_add_rms_norm);
- // Rotary embedding
- // Apply GPT-NeoX or GPT-J style rotary embedding to query and key.
- ops.def(
- "rotary_embedding(Tensor positions, Tensor! query,"
- " Tensor! key, int head_size,"
- " Tensor cos_sin_cache, bool is_neox) -> ()");
- ops.impl("rotary_embedding", torch::kCUDA, &rotary_embedding);
- // Apply GPT-NeoX or GPT-J style rotary embedding to query and key
- // (supports multiple loras).
- ops.def(
- "batched_rotary_embedding(Tensor positions, Tensor! query,"
- " Tensor! key, int head_size,"
- " Tensor cos_sin_cache, bool is_neox,"
- " int rot_dim,"
- " Tensor cos_sin_cache_offsets) -> ()");
- ops.impl("batched_rotary_embedding", torch::kCUDA, &batched_rotary_embedding);
- // Quantization ops
- #ifndef USE_ROCM
- // Quantized GEMM for AQLM.
- ops.def(
- "aqlm_gemm(Tensor input, Tensor codes, Tensor codebooks, "
- "Tensor scales, int[] codebook_partition_sizes, Tensor? bias) "
- "-> Tensor");
- ops.impl("aqlm_gemm", torch::kCUDA, &aqlm_gemm);
- // Decompression method for AQLM.
- ops.def(
- "aqlm_dequant(Tensor codes, Tensor codebooks, "
- "int[] codebook_partition_sizes) -> Tensor");
- ops.impl("aqlm_dequant", torch::kCUDA, &aqlm_dequant);
- // Quantized GEMM for AWQ.
- ops.def(
- "awq_gemm(Tensor _in_feats, Tensor _kernel, Tensor _scaling_factors, "
- "Tensor _zeros, int split_k_iters) -> Tensor");
- ops.impl("awq_gemm", torch::kCUDA, &awq_gemm);
- // Dequantization for AWQ.
- ops.def(
- "awq_dequantize(Tensor _kernel, Tensor _scaling_factors, "
- "Tensor _zeros, int split_k_iters, int thx, int thy) -> Tensor");
- ops.impl("awq_dequantize", torch::kCUDA, &awq_dequantize);
- // Dequantization for GGML.
- ops.def("ggml_dequantize(Tensor W, int type, int m, int n) -> Tensor");
- ops.impl("ggml_dequantize", torch::kCUDA, &ggml_dequantize);
- // mmvq kernel for GGML.
- ops.def(
- "ggml_mul_mat_vec_a8(Tensor W, Tensor X, int type, int row) "
- "-> Tensor");
- ops.impl("ggml_mul_mat_vec_a8", torch::kCUDA, &ggml_mul_mat_vec_a8);
- // mmq kernel for GGML.
- ops.def("ggml_mul_mat_a8(Tensor W, Tensor X, int type, int row) -> Tensor");
- ops.impl("ggml_mul_mat_a8", torch::kCUDA, &ggml_mul_mat_a8);
- // Note about marlin kernel 'workspace' arguments:
- // Technically these should be mutable since they are modified by the kernel.
- // But since they are set back to zero once the kernel is finished we can
- // hand wave and say that they have no net effect.
- //
- // The reason to mark 'workspace' as immutable is so that they don't interfere
- // with using ScalarType arguments in the ops. If they are marked as mutable,
- // pytorch throws an assert in
- // 'torch._higher_order_ops._register_effectful_op' that prevents these
- // kernels from being torch.compile'd.
- // See the following document for more info on custom types and ops that use
- // custom types:
- // https://docs.google.com/document/d/18fBMPuOJ0fY5ZQ6YyrHUppw9FA332CpNtgB6SOIgyuA
- // Marlin (Dense) Optimized Quantized GEMM for GPTQ.
- ops.def(
- "marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, "
- "Tensor! workspace, int size_m, int size_n, int size_k) -> Tensor");
- ops.impl("marlin_gemm", torch::kCUDA, &marlin_gemm);
- // Marlin_24 (Sparse) Optimized Quantized GEMM for GPTQ.
- ops.def(
- "gptq_marlin_24_gemm(Tensor a, Tensor b_q_weight, Tensor b_meta, "
- "Tensor b_scales, Tensor workspace, "
- "__torch__.torch.classes._core_C.ScalarType b_q_type, "
- "int size_m, int size_n, int size_k) -> Tensor");
- ops.impl("gptq_marlin_24_gemm", torch::kCUDA, &gptq_marlin_24_gemm);
- // gptq_marlin Optimized Quantized GEMM for GPTQ.
- ops.def(
- "gptq_marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, "
- "Tensor b_zeros, Tensor g_idx, Tensor perm, Tensor workspace, "
- "__torch__.torch.classes._core_C.ScalarType b_q_type, "
- "int size_m, int size_n, int size_k, bool is_k_full, "
- "bool has_zp, bool use_fp32_reduce, bool is_zp_float) -> Tensor");
- ops.impl("gptq_marlin_gemm", torch::kCUDA, &gptq_marlin_gemm);
- // gptq_marlin repack from GPTQ.
- ops.def(
- "gptq_marlin_repack(Tensor b_q_weight, Tensor perm, "
- "SymInt size_k, SymInt size_n, int num_bits) -> Tensor");
- ops.impl("gptq_marlin_repack", torch::kCUDA, &gptq_marlin_repack);
- ops.impl("gptq_marlin_repack", torch::kMeta, &gptq_marlin_repack_meta);
- // awq_marlin repack from AWQ.
- ops.def(
- "awq_marlin_repack(Tensor b_q_weight, SymInt size_k, "
- "SymInt size_n, int num_bits) -> Tensor");
- ops.impl("awq_marlin_repack", torch::kCUDA, &awq_marlin_repack);
- ops.impl("awq_marlin_repack", torch::kMeta, &awq_marlin_repack_meta);
- // fp8_marlin Optimized Quantized GEMM for FP8 weight-only.
- ops.def(
- "fp8_marlin_gemm(Tensor a, Tensor b_q_weight, Tensor b_scales, "
- "Tensor! workspace, int num_bits, int size_m, int size_n, "
- "int size_k) -> Tensor");
- ops.impl("fp8_marlin_gemm", torch::kCUDA, &fp8_marlin_gemm);
- #ifndef _WIN32
- // marlin_qqq_gemm for QQQ.
- ops.def(
- "marlin_qqq_gemm(Tensor a, Tensor b_q_weight, "
- "Tensor s_tok, Tensor s_ch, Tensor s_group, "
- "Tensor! workspace, int size_m, int size_n, "
- "int size_k) -> Tensor");
- ops.impl("marlin_qqq_gemm", torch::kCUDA, &marlin_qqq_gemm);
- // CUTLASS w8a8 GEMM, supporting symmetric per-tensor or per-row/column
- // quantization.
- ops.def(
- "cutlass_scaled_mm(Tensor! out, Tensor a,"
- " Tensor b, Tensor a_scales,"
- " Tensor b_scales, Tensor? bias) -> ()");
- ops.impl("cutlass_scaled_mm", torch::kCUDA, &cutlass_scaled_mm);
- // Check if cutlass scaled_mm is supported for CUDA devices of the given
- // capability
- ops.def("cutlass_scaled_mm_supports_fp8(int cuda_device_capability) -> bool");
- ops.impl("cutlass_scaled_mm_supports_fp8", &cutlass_scaled_mm_supports_fp8);
- // CUTLASS w8a8 GEMM, supporting asymmetric per-tensor or per-row/column
- // quantization.
- ops.def(
- "cutlass_scaled_mm_azp(Tensor! out, Tensor a,"
- " Tensor b, Tensor a_scales,"
- " Tensor b_scales, Tensor azp_adj,"
- " Tensor? azp, Tensor? bias) -> ()");
- ops.impl("cutlass_scaled_mm_azp", torch::kCUDA, &cutlass_scaled_mm_azp);
- // Machete (Dense) Optimized Mixed Precision GEMM for Hopper.
- ops.def("machete_supported_schedules", &machete::supported_schedules);
- ops.def(
- "machete_gemm(Tensor A, Tensor B,"
- " __torch__.torch.classes._core_C.ScalarType btype,"
- " Tensor? scales, Tensor? zeros, int? group_size,"
- " Tensor? C, float? alpha, float? beta, str? schedule)"
- "-> Tensor");
- ops.impl("machete_gemm", torch::kCUDA, &machete::gemm);
- ops.def(
- "machete_prepack_B(Tensor B,"
- " __torch__.torch.classes._core_C.ScalarType btype)"
- "-> Tensor");
- ops.impl("machete_prepack_B", torch::kCUDA, &machete::prepack_B);
- ops.def("permute_cols(Tensor A, Tensor perm) -> Tensor");
- ops.impl("permute_cols", torch::kCUDA, &permute_cols);
- #endif
- // QuIP# GEMV
- ops.def("quip_gemv(Tensor A, Tensor B, Tensor CB) -> Tensor",
- &e8p_mm_origorder);
- ops.impl("quip_gemv", torch::kCUDA, &e8p_mm_origorder);
- // QuIP# Decompress
- ops.def("quip_decompress(Tensor YIs, Tensor CB, Tensor Y) -> ()",
- &decompress_e8p_origorder);
- ops.impl("quip_decompress", torch::kCUDA, &decompress_e8p_origorder);
- // fp6_llm
- ops.def(
- "fp_eXmY_linear_forward_cuda(int EXPONENT, int MANTISSA,"
- " Tensor _in_feats, Tensor _weights,"
- " Tensor _scales, int splitK=1) -> Tensor");
- ops.impl("fp_eXmY_linear_forward_cuda", torch::kCUDA,
- &fp_eXmY_linear_forward_cuda);
- // Sampling Kernels
- ops.def(
- "sampling_from_probs(Tensor probs, Tensor uniform_samples, bool "
- "deterministic) -> Tensor",
- &sampling_from_probs);
- ops.impl("sampling_from_probs", torch::kCUDA, &sampling_from_probs);
- ops.def(
- "top_k_sampling_from_probs(Tensor probs, Tensor uniform_samples,"
- " Tensor? maybe_top_k_arr, int top_k_val,"
- " bool deterministic) -> Tensor[]",
- &top_k_sampling_from_probs);
- ops.impl("top_k_sampling_from_probs", torch::kCUDA,
- &top_k_sampling_from_probs);
- ops.def(
- "min_p_sampling_from_probs(Tensor probs, Tensor uniform_samples,"
- " Tensor? maybe_min_p_arr, float min_p_val,"
- " bool deterministic) -> Tensor[]",
- &min_p_sampling_from_probs);
- ops.impl("min_p_sampling_from_probs", torch::kCUDA,
- &min_p_sampling_from_probs);
- ops.def(
- "top_p_sampling_from_probs(Tensor probs, Tensor uniform_samples,"
- " Tensor? maybe_top_p_arr, float top_p_val,"
- " bool deterministic) -> Tensor[]",
- &top_p_sampling_from_probs);
- ops.impl("top_p_sampling_from_probs", torch::kCUDA,
- &top_p_sampling_from_probs);
- ops.def(
- "top_k_top_p_sampling_from_probs(Tensor probs, Tensor uniform_samples,"
- " Tensor? maybe_top_k_arr, float top_k_val,"
- " Tensor? maybe_top_p_arr, float top_p_val,"
- " bool deterministic) -> Tensor[]",
- &top_k_top_p_sampling_from_probs);
- ops.impl("top_k_top_p_sampling_from_probs", torch::kCUDA,
- &top_k_top_p_sampling_from_probs);
- ops.def(
- "top_k_renorm_prob(Tensor probs, Tensor? maybe_top_k_arr, int top_k_val) "
- "-> Tensor",
- &top_k_renorm_prob);
- ops.impl("top_k_renorm_prob", torch::kCUDA, &top_k_renorm_prob);
- ops.def(
- "top_p_renorm_prob(Tensor probs, Tensor? maybe_top_p_arr, float "
- "top_p_val) "
- "-> Tensor",
- &top_p_renorm_prob);
- ops.impl("top_p_renorm_prob", torch::kCUDA, &top_p_renorm_prob);
- ops.def(
- "top_k_mask_logits(Tensor logits, Tensor? maybe_top_k_arr, int "
- "top_k_val) -> Tensor",
- &top_k_mask_logits);
- ops.impl("top_k_mask_logits", torch::kCUDA, &top_k_mask_logits);
- #endif
- // Quantized GEMM for GPTQ.
- // Note: even though the C++ inferred schema is correct for this op, it seems
- // to prevent the meta function registry.
- ops.def(
- "gptq_gemm(Tensor a, Tensor b_q_weight, Tensor b_gptq_qzeros, "
- "Tensor b_gptq_scales, Tensor b_g_idx, bool use_exllama, int bit) "
- "-> Tensor");
- ops.impl("gptq_gemm", torch::kCUDA, &gptq_gemm);
- // Post processing for GPTQ.
- ops.def("gptq_shuffle(Tensor! q_weight, Tensor q_perm, int bit) -> ()");
- ops.impl("gptq_shuffle", torch::kCUDA, &gptq_shuffle);
- // Quantized GEMM for SqueezeLLM.
- ops.def(
- "squeezellm_gemm(Tensor vec, Tensor mat, Tensor! mul, Tensor "
- "lookup_table) -> ()");
- ops.impl("squeezellm_gemm", torch::kCUDA, &squeezellm_gemm);
- // Compute FP8 quantized tensor for given scaling factor.
- ops.def(
- "static_scaled_fp8_quant(Tensor! out, Tensor input, Tensor scale) -> ()");
- ops.impl("static_scaled_fp8_quant", torch::kCUDA, &static_scaled_fp8_quant);
- // Compute dynamic-per-tensor FP8 quantized tensor and scaling factor.
- ops.def(
- "dynamic_scaled_fp8_quant(Tensor! out, Tensor input, Tensor! scale) -> "
- "()");
- ops.impl("dynamic_scaled_fp8_quant", torch::kCUDA, &dynamic_scaled_fp8_quant);
- // Compute dynamic-per-token FP8 quantized tensor and scaling factor.
- ops.def(
- "dynamic_per_token_scaled_fp8_quant(Tensor! out, Tensor input, "
- "Tensor! scale, Tensor? scale_ub) -> "
- "()");
- ops.impl("dynamic_per_token_scaled_fp8_quant", torch::kCUDA,
- &dynamic_per_token_scaled_fp8_quant);
- // Aligning the number of tokens to be processed by each expert such
- // that it is divisible by the block size.
- ops.def(
- "moe_align_block_size(Tensor topk_ids, int num_experts,"
- " int block_size, Tensor! sorted_token_ids,"
- " Tensor! experts_ids,"
- " Tensor! num_tokens_post_pad) -> ()");
- ops.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);
- // Compute int8 quantized tensor for given scaling factor.
- /*
- Implementation:
- void static_scaled_int8_quant(torch::Tensor& out, torch::Tensor const&
- input, torch::Tensor const& scale);
- */
- ops.def(
- "static_scaled_int8_quant(Tensor! out, Tensor input, Tensor scale) -> "
- "()");
- ops.impl("static_scaled_int8_quant", torch::kCUDA, &static_scaled_int8_quant);
- // Compute int8 quantized tensor and scaling factor
- /*
- Implementation:
- void dynamic_scaled_int8_quant(torch::Tensor& out, torch::Tensor const&
- input, torch::Tensor& scales);
- */
- ops.def(
- "dynamic_scaled_int8_quant(Tensor! out, Tensor input, Tensor! scale) -> "
- "()");
- ops.impl("dynamic_scaled_int8_quant", torch::kCUDA,
- &dynamic_scaled_int8_quant);
- #ifndef USE_ROCM
- // Mamba kernels
- ops.def(
- "selective_scan_fwd(Tensor! u, Tensor! delta,"
- "Tensor! A, Tensor! B, Tensor! C,"
- "Tensor? D_, Tensor? z_, Tensor? delta_bias_,"
- "bool delta_softplus,"
- "Tensor? index_, Tensor(a! -> *)? x) -> Tensor(a)[]");
- ops.impl("selective_scan_fwd", torch::kCUDA, &selective_scan_fwd);
- ops.def(
- "causal_conv1d_update(Tensor! x,"
- "Tensor! conv_state,"
- "Tensor! weight,"
- "Tensor? bias_,"
- "bool silu_activation) -> Tensor");
- ops.impl("causal_conv1d_update", torch::kCUDA, &causal_conv1d_update);
- ops.def(
- "causal_conv1d_fwd(Tensor! x, Tensor! weight,"
- "Tensor? bias_,"
- "Tensor? seq_idx_,"
- "Tensor? seq_pos_idx_,"
- "Tensor? initial_states_,"
- "Tensor? final_states_out_,"
- "bool silu_activation) -> Tensor");
- ops.impl("causal_conv1d_fwd", torch::kCUDA, &causal_conv1d_fwd);
- #endif
- }
- TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
- // Cache ops
- // Swap in (out) the cache blocks from src to dst.
- cache_ops.def(
- "swap_blocks(Tensor src, Tensor! dst, Tensor block_mapping) -> ()");
- cache_ops.impl("swap_blocks", torch::kCUDA, &swap_blocks);
- // Copy the cache blocks from src to dst.
- cache_ops.def(
- "copy_blocks(Tensor(a!)[] key_caches, Tensor[](b!) value_caches, "
- "Tensor block_mapping) -> ()");
- cache_ops.impl("copy_blocks", torch::kCUDA, ©_blocks);
- // Reshape the key and value tensors and cache them.
- cache_ops.def(
- "reshape_and_cache(Tensor key, Tensor value,"
- " Tensor! key_cache, Tensor! value_cache,"
- " Tensor slot_mapping,"
- " str kv_cache_dtype,"
- " float k_scale, float v_scale) -> ()");
- cache_ops.impl("reshape_and_cache", torch::kCUDA, &reshape_and_cache);
- // Reshape the key and value tensors and cache them.
- cache_ops.def(
- "reshape_and_cache_flash(Tensor key, Tensor value,"
- " Tensor! key_cache,"
- " Tensor! value_cache,"
- " Tensor slot_mapping,"
- " str kv_cache_dtype,"
- " float k_scale, float v_scale) -> ()");
- cache_ops.impl("reshape_and_cache_flash", torch::kCUDA,
- &reshape_and_cache_flash);
- // Convert the key and value cache to fp8 data type.
- cache_ops.def(
- "convert_fp8(Tensor! dst_cache, Tensor src_cache, float scale, "
- "str kv_cache_dtype) -> ()");
- cache_ops.impl("convert_fp8", torch::kCUDA, &convert_fp8);
- }
- TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cuda_utils), cuda_utils) {
- // Cuda utils
- // Gets the specified device attribute.
- cuda_utils.def("get_device_attribute(int attribute, int device_id) -> int");
- cuda_utils.impl("get_device_attribute", &get_device_attribute);
- // Gets the maximum shared memory per block device attribute.
- cuda_utils.def(
- "get_max_shared_memory_per_block_device_attribute(int device_id) -> int");
- cuda_utils.impl("get_max_shared_memory_per_block_device_attribute",
- &get_max_shared_memory_per_block_device_attribute);
- }
- #ifndef USE_ROCM
- TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _custom_ar), custom_ar) {
- // Custom all-reduce kernels
- custom_ar.def(
- "init_custom_ar(Tensor meta, Tensor rank_data, "
- "str[] handles, int[] offsets, int rank, "
- "bool full_nvlink) -> int");
- custom_ar.impl("init_custom_ar", torch::kCUDA, &init_custom_ar);
- custom_ar.def(
- "should_custom_ar(Tensor inp, int max_size, int world_size, "
- "bool full_nvlink) -> bool");
- custom_ar.impl("should_custom_ar", torch::kCUDA, &should_custom_ar);
- custom_ar.def("all_reduce_reg(int fa, Tensor inp, Tensor! out) -> ()");
- custom_ar.impl("all_reduce_reg", torch::kCUDA, &all_reduce_reg);
- custom_ar.def(
- "all_reduce_unreg(int fa, Tensor inp, Tensor reg_buffer, Tensor! out) -> "
- "()");
- custom_ar.impl("all_reduce_unreg", torch::kCUDA, &all_reduce_unreg);
- custom_ar.def("dispose", &dispose);
- custom_ar.def("meta_size", &meta_size);
- custom_ar.def(
- "register_buffer(int fa, Tensor t, str[] handles, "
- "int[] offsets) -> ()");
- custom_ar.impl("register_buffer", torch::kCUDA, ®ister_buffer);
- custom_ar.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta);
- custom_ar.def("register_graph_buffers", ®ister_graph_buffers);
- }
- #endif
- REGISTER_EXTENSION(TORCH_EXTENSION_NAME)
|