123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338 |
- # coding=utf-8
- # Adapted from
- # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/bloom/modeling_bloom.py
- # Copyright 2023 The vLLM team.
- # Copyright 2022 HuggingFace Inc. team and BigScience workshop.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Inference-only BLOOM model compatible with HuggingFace weights."""
- import math
- from typing import Iterable, List, Optional, Tuple
- import torch
- from torch import nn
- from transformers import BloomConfig
- from aphrodite.attention import Attention, AttentionMetadata
- from aphrodite.common.config import CacheConfig
- from aphrodite.common.sequence import IntermediateTensors
- from aphrodite.distributed import (get_tensor_model_parallel_rank,
- get_tensor_model_parallel_world_size)
- from aphrodite.modeling.layers.activation import get_act_fn
- from aphrodite.modeling.layers.linear import (ColumnParallelLinear,
- QKVParallelLinear,
- RowParallelLinear)
- from aphrodite.modeling.layers.logits_processor import LogitsProcessor
- from aphrodite.modeling.layers.sampler import Sampler, SamplerOutput
- from aphrodite.modeling.layers.vocab_parallel_embedding import (
- VocabParallelEmbedding)
- from aphrodite.modeling.model_loader.weight_utils import default_weight_loader
- from aphrodite.modeling.sampling_metadata import SamplingMetadata
- from aphrodite.quantization.base_config import QuantizationConfig
- def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
- closest_power_of_2 = 2**math.floor(math.log2(total_num_heads))
- base = torch.tensor(
- 2**(-(2**-(math.log2(closest_power_of_2) - 3))),
- dtype=torch.float32,
- )
- powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
- slopes = torch.pow(base, powers)
- if closest_power_of_2 != total_num_heads:
- extra_base = torch.tensor(
- 2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
- dtype=torch.float32,
- )
- num_remaining_heads = min(closest_power_of_2,
- total_num_heads - closest_power_of_2)
- extra_powers = torch.arange(start=1,
- end=1 + 2 * num_remaining_heads,
- step=2,
- dtype=torch.int32)
- slopes = torch.cat(
- [slopes, torch.pow(extra_base, extra_powers)], dim=0)
- return slopes
- class BloomAttention(nn.Module):
- def __init__(
- self,
- config: BloomConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.hidden_size = config.hidden_size
- self.total_num_heads = config.n_head
- self.head_dim = self.hidden_size // self.total_num_heads
- assert self.head_dim * self.total_num_heads == self.hidden_size
- tp_world_size = get_tensor_model_parallel_world_size()
- assert self.total_num_heads % tp_world_size == 0
- self.num_heads = self.total_num_heads // tp_world_size
- self.query_key_value = QKVParallelLinear(
- self.hidden_size,
- self.head_dim,
- self.total_num_heads,
- bias=True,
- quant_config=quant_config,
- )
- self.dense = RowParallelLinear(
- self.hidden_size,
- self.hidden_size,
- bias=True,
- quant_config=quant_config,
- )
- # Create the alibi slopes and slice them.
- tp_rank = get_tensor_model_parallel_rank()
- head_start = tp_rank * self.num_heads
- head_end = (tp_rank + 1) * self.num_heads
- alibi_slopes = _get_alibi_slopes(self.total_num_heads)
- alibi_slopes = alibi_slopes[head_start:head_end].tolist()
- scaling = self.head_dim**-0.5
- self.attn = Attention(self.num_heads,
- self.head_dim,
- scaling,
- alibi_slopes=alibi_slopes,
- cache_config=cache_config,
- quant_config=quant_config)
- def forward(
- self,
- position_ids: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- del position_ids # Unused.
- qkv, _ = self.query_key_value(hidden_states)
- q, k, v = qkv.chunk(chunks=3, dim=-1)
- attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
- output, _ = self.dense(attn_output)
- return output
- class BloomMLP(nn.Module):
- def __init__(
- self,
- config: BloomConfig,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- hidden_size = config.hidden_size
- self.dense_h_to_4h = ColumnParallelLinear(
- hidden_size,
- 4 * hidden_size,
- quant_config=quant_config,
- )
- self.gelu_impl = get_act_fn("gelu", quant_config, 4 * hidden_size)
- self.dense_4h_to_h = RowParallelLinear(
- 4 * hidden_size,
- hidden_size,
- quant_config=quant_config,
- )
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- x, _ = self.dense_h_to_4h(x)
- x = self.gelu_impl(x)
- x, _ = self.dense_4h_to_h(x)
- return x
- class BloomBlock(nn.Module):
- def __init__(
- self,
- config: BloomConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- hidden_size = config.hidden_size
- self.input_layernorm = nn.LayerNorm(hidden_size,
- eps=config.layer_norm_epsilon)
- self.self_attention = BloomAttention(config, cache_config,
- quant_config)
- self.post_attention_layernorm = nn.LayerNorm(
- hidden_size, eps=config.layer_norm_epsilon)
- self.mlp = BloomMLP(config, quant_config)
- self.apply_residual_connection_post_layernorm = (
- config.apply_residual_connection_post_layernorm)
- def forward(
- self,
- position_ids: torch.Tensor,
- hidden_states: torch.Tensor,
- kv_cache: torch.Tensor,
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- # Layer norm at the beginning of the transformer layer.
- layernorm_output = self.input_layernorm(hidden_states)
- # Layer norm post the self attention.
- if self.apply_residual_connection_post_layernorm:
- residual = layernorm_output
- else:
- residual = hidden_states
- # Self attention.
- attention_output = self.self_attention(
- position_ids=position_ids,
- hidden_states=layernorm_output,
- kv_cache=kv_cache,
- attn_metadata=attn_metadata,
- )
- attention_output = attention_output + residual
- layernorm_output = self.post_attention_layernorm(attention_output)
- # Get residual
- if self.apply_residual_connection_post_layernorm:
- residual = layernorm_output
- else:
- residual = attention_output
- # MLP.
- output = self.mlp(layernorm_output) + residual
- return output
- class BloomModel(nn.Module):
- def __init__(
- self,
- config: BloomConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.embed_dim = config.hidden_size
- # Embedding + LN Embedding
- self.word_embeddings = VocabParallelEmbedding(
- config.vocab_size,
- self.embed_dim,
- )
- self.word_embeddings_layernorm = nn.LayerNorm(
- self.embed_dim, eps=config.layer_norm_epsilon)
- # Transformer blocks
- self.h = nn.ModuleList([
- BloomBlock(config, cache_config, quant_config)
- for _ in range(config.num_hidden_layers)
- ])
- # Final Layer Norm
- self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
- def forward(
- self,
- input_ids: torch.Tensor,
- position_ids: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- ) -> torch.Tensor:
- hidden_states = self.word_embeddings(input_ids)
- hidden_states = self.word_embeddings_layernorm(hidden_states)
- for i in range(len(self.h)):
- layer = self.h[i]
- hidden_states = layer(
- position_ids,
- hidden_states,
- kv_caches[i],
- attn_metadata,
- )
- hidden_states = self.ln_f(hidden_states)
- return hidden_states
- class BloomForCausalLM(nn.Module):
- def __init__(
- self,
- config: BloomConfig,
- cache_config: Optional[CacheConfig] = None,
- quant_config: Optional[QuantizationConfig] = None,
- ):
- super().__init__()
- self.config = config
- self.quant_config = quant_config
- self.transformer = BloomModel(config, cache_config, quant_config)
- self.lm_head = self.transformer.word_embeddings
- self.logits_processor = LogitsProcessor(config.vocab_size)
- self.sampler = Sampler()
- def forward(
- self,
- input_ids: torch.Tensor,
- positions: torch.Tensor,
- kv_caches: List[torch.Tensor],
- attn_metadata: AttentionMetadata,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- ) -> torch.Tensor:
- hidden_states = self.transformer(input_ids, positions, kv_caches,
- attn_metadata)
- return hidden_states
- def compute_logits(
- self,
- hidden_states: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[torch.Tensor]:
- logits = self.logits_processor(self.lm_head, hidden_states,
- sampling_metadata)
- return logits
- def sample(
- self,
- logits: torch.Tensor,
- sampling_metadata: SamplingMetadata,
- ) -> Optional[SamplerOutput]:
- next_tokens = self.sampler(logits, sampling_metadata)
- return next_tokens
- def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
- params_dict = dict(self.named_parameters(remove_duplicate=False))
- for name, loaded_weight in weights:
- if name == "lm_head.weight":
- continue
- if not name.startswith("transformer."):
- name = "transformer." + name
- param = params_dict[name]
- if "query_key_value" in name:
- # NOTE: BLOOM's fused QKV's output_dim has the shape of
- # (num_heads * 3 * head_size), while the
- # required shape is (3 * num_heads * head_size).
- # Thus, we need weight conversion.
- output_dim = getattr(param, "output_dim", None)
- num_heads = self.config.num_attention_heads
- if output_dim is not None:
- loaded_weight_shape = loaded_weight.shape
- loaded_weight = loaded_weight.view(
- loaded_weight_shape[:output_dim] + (num_heads, 3, -1) +
- loaded_weight_shape[output_dim + 1:])
- loaded_weight = loaded_weight.transpose(
- output_dim, output_dim + 1)
- loaded_weight = loaded_weight.reshape(loaded_weight_shape)
- weight_loader = getattr(param, "weight_loader",
- default_weight_loader)
- weight_loader(param, loaded_weight)
|