123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- from typing import Dict, List, Optional, Tuple
- import torch
- from loguru import logger
- from aphrodite.common.config import (DeviceConfig, ModelConfig, ParallelConfig,
- SchedulerConfig)
- from aphrodite.modeling import SamplingMetadata
- from aphrodite.modeling.neuron_loader import get_neuron_model
- from aphrodite.common.sampling_params import SamplingParams, SamplingType
- from aphrodite.common.sequence import (SamplerOutput, SequenceData,
- SequenceGroupMetadata)
- from aphrodite.common.utils import (async_tensor_h2d, is_pin_memory_available,
- make_tensor_with_pad, maybe_expand_dim)
- class NeuronModelRunner:
- def __init__(
- self,
- model_config: ModelConfig,
- parallel_config: ParallelConfig,
- scheduler_config: SchedulerConfig,
- device_config: DeviceConfig,
- ):
- self.model_config = model_config
- self.parallel_config = parallel_config
- self.scheduler_config = scheduler_config
- if model_config is not None and model_config.get_sliding_window():
- logger.warning("Sliding window is not supported on Neuron. "
- "The model will run without sliding window.")
- self.device_config = (device_config
- if device_config is not None else DeviceConfig())
- self.device = self.device_config.device
- self.model = None
- self.pin_memory = is_pin_memory_available()
- def load_model(self) -> None:
- self.model = get_neuron_model(self.model_config,
- parallel_config=self.parallel_config,
- scheduler_config=self.scheduler_config)
- def _prepare_prompt(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, List[int]]:
- assert len(seq_group_metadata_list) > 0
- input_tokens: List[List[int]] = []
- input_positions: List[List[int]] = []
- input_block_ids: List[int] = []
- prompt_lens: List[int] = []
- for seq_group_metadata in seq_group_metadata_list:
- assert seq_group_metadata.is_prompt
- seq_ids = list(seq_group_metadata.seq_data.keys())
- assert len(seq_ids) == 1
- seq_id = seq_ids[0]
- seq_data = seq_group_metadata.seq_data[seq_id]
- prompt_tokens = seq_data.get_token_ids()
- prompt_len = len(prompt_tokens)
- prompt_lens.append(prompt_len)
- input_tokens.append(prompt_tokens)
- input_positions.append(list(range(prompt_len)))
- assert seq_group_metadata.block_tables is not None
- block_table = seq_group_metadata.block_tables[seq_id]
- assert len(block_table) == 1
- input_block_ids.append(block_table[0])
- max_prompt_len = max(prompt_lens)
- assert max_prompt_len > 0
- input_tokens = make_tensor_with_pad(input_tokens,
- max_prompt_len,
- pad=0,
- dtype=torch.long,
- device=self.device)
- input_positions = make_tensor_with_pad(input_positions,
- max_prompt_len,
- pad=0,
- dtype=torch.long,
- device=self.device)
- input_block_ids = torch.tensor(input_block_ids,
- dtype=torch.long,
- device=self.device)
- return input_tokens, input_positions, input_block_ids, prompt_lens
- def _prepare_decode(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- assert len(seq_group_metadata_list) > 0
- input_tokens: List[List[int]] = []
- input_positions: List[List[int]] = []
- input_block_ids: List[int] = []
- context_lens: List[int] = []
- for seq_group_metadata in seq_group_metadata_list:
- assert not seq_group_metadata.is_prompt
- seq_ids = list(seq_group_metadata.seq_data.keys())
- for seq_id in seq_ids:
- seq_data = seq_group_metadata.seq_data[seq_id]
- generation_token = seq_data.get_last_token_id()
- input_tokens.append([generation_token])
- seq_len = seq_data.get_len()
- position = seq_len - 1
- input_positions.append([position])
- context_lens.append(seq_len)
- assert seq_group_metadata.block_tables is not None
- block_table = seq_group_metadata.block_tables[seq_id]
- assert len(block_table) == 1
- input_block_ids.append(block_table[0])
- input_tokens = make_tensor_with_pad(input_tokens,
- max_len=1,
- pad=0,
- dtype=torch.long,
- device=self.device)
- input_positions = make_tensor_with_pad(input_positions,
- max_len=1,
- pad=0,
- dtype=torch.long,
- device=self.device)
- context_lens = torch.tensor(context_lens,
- dtype=torch.int,
- device=self.device)
- input_block_ids = torch.tensor(input_block_ids,
- dtype=torch.long,
- device=self.device)
- return input_tokens, input_positions, input_block_ids
- def _prepare_sample(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- prompt_lens: List[int],
- ) -> SamplingMetadata:
- seq_groups: List[Tuple[List[int], SamplingParams]] = []
- selected_token_indices: List[int] = []
- generators: List[torch.Generator] = []
- selected_token_start_idx = 0
- categorized_sample_indices = {t: [] for t in SamplingType}
- categorized_sample_indices_start_idx = 0
- categorized_sampled_token_indices_start_idx = 0
- for i, seq_group_metadata in enumerate(seq_group_metadata_list):
- seq_ids = list(seq_group_metadata.seq_data.keys())
- sampling_params = seq_group_metadata.sampling_params
- seq_groups.append((seq_ids, sampling_params))
- if seq_group_metadata.is_prompt:
- assert len(seq_ids) == 1
- assert prompt_lens is not None
- prompt_len = prompt_lens[i]
- if sampling_params.prompt_logprobs is not None:
- # NOTE: prompt token positions do not need sample, skip
- categorized_sample_indices_start_idx += prompt_len - 1
- categorized_sample_indices[
- sampling_params.sampling_type].append([
- categorized_sample_indices_start_idx,
- categorized_sampled_token_indices_start_idx
- ])
- categorized_sample_indices_start_idx += 1
- categorized_sampled_token_indices_start_idx += 1
- if sampling_params.prompt_logprobs is not None:
- selected_token_indices.extend(
- range(selected_token_start_idx,
- selected_token_start_idx + prompt_len - 1))
- selected_token_indices.append(selected_token_start_idx +
- prompt_len - 1)
- selected_token_start_idx += prompt_len
- if sampling_params.seed is not None:
- seq_group_metadata.state.generator = torch.Generator(
- device=self.device).manual_seed(sampling_params.seed)
- else:
- num_seqs = len(seq_ids)
- selected_token_indices.extend(
- range(selected_token_start_idx,
- selected_token_start_idx + num_seqs))
- selected_token_start_idx += num_seqs
- categorized_sample_indices[
- sampling_params.sampling_type].extend(
- zip(
- range(
- categorized_sample_indices_start_idx,
- categorized_sample_indices_start_idx +
- num_seqs),
- range(
- categorized_sampled_token_indices_start_idx,
- categorized_sampled_token_indices_start_idx +
- num_seqs)))
- categorized_sample_indices_start_idx += num_seqs
- categorized_sampled_token_indices_start_idx += num_seqs
- if sampling_params.seed is not None:
- generators.append(seq_group_metadata.state.generator)
- selected_token_indices = async_tensor_h2d(selected_token_indices,
- dtype=torch.long,
- target_device=self.device,
- pin_memory=self.pin_memory)
- categorized_sample_indices = {
- t: maybe_expand_dim(
- async_tensor_h2d(seq_ids,
- dtype=torch.int,
- target_device=self.device,
- pin_memory=self.pin_memory), 2, 2)
- for t, seq_ids in categorized_sample_indices.items()
- }
- seq_data: Dict[int, SequenceData] = {}
- for seq_group_metadata in seq_group_metadata_list:
- seq_data.update(seq_group_metadata.seq_data)
- sampling_metadata = SamplingMetadata(
- seq_groups=seq_groups,
- seq_data=seq_data,
- prompt_lens=prompt_lens,
- selected_token_indices=selected_token_indices,
- categorized_sample_indices=categorized_sample_indices,
- generators=generators,
- )
- return sampling_metadata
- def prepare_input_tensors(
- self,
- seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, SamplingMetadata]:
- # NOTE: We assume that all sequences in the group are all prompts or
- # all decodes.
- is_prompt = seq_group_metadata_list[0].is_prompt
- # Prepare input tensors.
- if is_prompt:
- (input_tokens, input_positions, input_block_ids,
- prompt_lens) = self._prepare_prompt(seq_group_metadata_list)
- else:
- (input_tokens, input_positions,
- input_block_ids) = self._prepare_decode(seq_group_metadata_list)
- prompt_lens = []
- sampling_metadata = self._prepare_sample(seq_group_metadata_list,
- prompt_lens)
- return (input_tokens, input_positions, input_block_ids,
- sampling_metadata)
- @torch.inference_mode()
- def execute_model(
- self,
- seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
- ) -> Optional[SamplerOutput]:
- (input_tokens, input_positions, input_block_ids, sampling_metadata
- ) = self.prepare_input_tensors(seq_group_metadata_list)
- hidden_states = self.model(
- input_ids=input_tokens,
- positions=input_positions,
- input_block_ids=input_block_ids,
- )
- # Compute the logits.
- logits = self.model.compute_logits(hidden_states, sampling_metadata)
- # Sample the next token.
- output = self.model.sample(
- logits=logits,
- sampling_metadata=sampling_metadata,
- )
- return output
- @property
- def vocab_size(self) -> int:
- return self.model_config.get_vocab_size()
|