outlines_logits_processors.py 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. # Copyright 2024- the Outlines developers
  2. # This file is adapted from
  3. # https://github.com/outlines-dev/outlines/blob/main/outlines/serve/vllm.py
  4. #
  5. # Licensed under the Apache License, Version 2.0 (the "License");
  6. # you may not use this file except in compliance with the License.
  7. # You may obtain a copy of the License at
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import copy
  15. import json
  16. import math
  17. from collections import defaultdict
  18. from functools import lru_cache
  19. from typing import Callable, DefaultDict, Dict, List, Optional, Union
  20. import torch
  21. from outlines.fsm.fsm import CFGFSM, RegexFSM
  22. from outlines.fsm.json_schema import build_regex_from_schema
  23. from pydantic import BaseModel
  24. from transformers import PreTrainedTokenizerBase
  25. class BaseLogitsProcessor:
  26. def __init__(self):
  27. # Child class should use initialize in their init.
  28. self.fsm: Union[RegexFSM, CFGFSM]
  29. def init_state(self):
  30. """Initialize the FSM states."""
  31. self.fsm_state: DefaultDict[int, int] = defaultdict(int)
  32. def __call__(self, input_ids: List[int],
  33. scores: torch.Tensor) -> torch.Tensor:
  34. """Use the FSM to bias the logits before sampling the next token."""
  35. seq_id = hash(tuple(input_ids))
  36. if len(input_ids) == 0:
  37. self.init_state()
  38. else:
  39. last_token = input_ids[-1]
  40. last_seq_id = hash(tuple(input_ids[:-1]))
  41. self.fsm_state[seq_id] = self.fsm.next_state(
  42. self.fsm_state[last_seq_id], last_token)
  43. allowed_tokens = self.fsm.allowed_token_ids(self.fsm_state[seq_id])
  44. mask = torch.full((scores.shape[-1], ),
  45. -math.inf,
  46. device=scores.device)
  47. mask[allowed_tokens] = 0
  48. scores.add_(mask)
  49. return scores
  50. class RegexLogitsProcessor(BaseLogitsProcessor):
  51. def __init__(self, regex_string: str, tokenizer: PreTrainedTokenizerBase):
  52. """Compile the FSM that drives the regex-structured generation.
  53. Parameters
  54. ----------
  55. regex_string
  56. A string that represents a regular expression
  57. tokenizer
  58. The model's tokenizer
  59. """
  60. tokenizer = _adapt_tokenizer(tokenizer)
  61. fsm = RegexFSM(regex_string, tokenizer)
  62. self.fsm = fsm
  63. class JSONLogitsProcessor(RegexLogitsProcessor):
  64. def __init__(self,
  65. schema: Union[str, Dict, BaseModel],
  66. tokenizer: PreTrainedTokenizerBase,
  67. whitespace_pattern: Optional[str] = None):
  68. """Compile the FSM that drives the JSON-guided generation.
  69. Parameters
  70. ----------
  71. schema
  72. A JSON schema that encodes the structure we want the model to
  73. generate
  74. tokenizer
  75. The model's tokenizer
  76. whitespace_pattern
  77. Pattern to use for JSON syntactic whitespace (doesn't impact
  78. string literals)
  79. Example: allow only a single space or newline with
  80. `whitespace_pattern=r"[\n ]?"`
  81. """
  82. if isinstance(schema, type(BaseModel)):
  83. schema_str = json.dumps(schema.model_json_schema())
  84. elif isinstance(schema, Dict):
  85. schema_str = json.dumps(schema)
  86. elif isinstance(schema, str):
  87. schema_str = schema
  88. else:
  89. raise ValueError(
  90. f"Cannot parse schema {schema}. The schema must be either "
  91. f"a Pydantic object, a dictionary or a string that contains "
  92. f"the JSON Schema specification")
  93. regex_string = build_regex_from_schema(schema_str, whitespace_pattern)
  94. super().__init__(regex_string, tokenizer)
  95. class CFGLogitsProcessor(BaseLogitsProcessor):
  96. def __init__(self, cfg: str, tokenizer: PreTrainedTokenizerBase):
  97. """Compile the FSM that drives the context free grammar generation.
  98. Parameters
  99. ----------
  100. cfg
  101. A string that represents a context-free grammar
  102. tokenizer
  103. The model's tokenizer
  104. """
  105. tokenizer = _adapt_tokenizer(tokenizer)
  106. fsm = CFGFSM(cfg, tokenizer)
  107. self.fsm = fsm
  108. def init_state(self):
  109. """Initialize state with a CFGFSM copy."""
  110. super().init_state()
  111. self.fsm = self.fsm.copy()
  112. @lru_cache
  113. def _adapt_tokenizer(tokenizer: PreTrainedTokenizerBase):
  114. """Adapt Aphrodite's tokenizer to use to compile the FSM.
  115. The API of Outlines tokenizers is slightly different to that of
  116. `transformers`. The decoder of outlines, returns a list whereas
  117. the decode of Aphrodite returns an str. To sync the Aphrodite decoder with
  118. outlines internal api, the decoder should be adapted. In addition
  119. we need to handle the missing spaces to Llama's tokenizer to be
  120. able to compile FSMs for this model.
  121. """
  122. if getattr(tokenizer, "_outlines_adapted", False):
  123. return tokenizer
  124. tokenizer = copy.deepcopy(tokenizer)
  125. tokenizer.vocabulary = tokenizer.get_vocab()
  126. tokenizer.special_tokens = set(tokenizer.all_special_tokens)
  127. def convert_token_to_string(token: str) -> str:
  128. from transformers.file_utils import SPIECE_UNDERLINE
  129. string = tokenizer.convert_tokens_to_string([token])
  130. # A hack to handle missing spaces to HF's Llama tokenizers
  131. if token.startswith(SPIECE_UNDERLINE) or token == "<0x20>":
  132. return " " + string
  133. return string
  134. def change_decoder(
  135. decoder: Callable[[List[int]],
  136. str]) -> Callable[[List[int]], List[str]]:
  137. """Sync vLLM's decoder with the outlines by returning list."""
  138. def new_decoder(inp_tokens: List[int]) -> List[str]:
  139. return [decoder(inp_tokens)]
  140. return new_decoder
  141. tokenizer.convert_token_to_string = convert_token_to_string
  142. tokenizer.decode = change_decoder(tokenizer.decode)
  143. setattr(tokenizer, "_outlines_adapted", True) # noqa: B010
  144. return tokenizer