123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- import pickle
- from typing import List, Optional, Tuple
- from loguru import logger
- from aphrodite.common.config import ParallelConfig
- from aphrodite.common.utils import get_ip, is_hip
- from aphrodite.task_handler.worker_base import WorkerWrapperBase
- try:
- import ray
- class RayWorkerWrapper(WorkerWrapperBase):
- """Ray wrapper for aphrodite.task_handler.Worker, allowing Worker to be
- lazliy initialized after Ray sets CUDA_VISIBLE_DEVICES."""
- def __init__(self, *args, **kwargs) -> None:
- super().__init__(*args, **kwargs)
- # Since the compiled DAG runs a main execution
- # in a different thread that calls cuda.set_device.
- # The flag indicates is set_device is called on
- # that thread.
- self.compiled_dag_cuda_device_set = False
- def get_node_ip(self) -> str:
- return get_ip()
- def get_node_and_gpu_ids(self) -> Tuple[str, List[int]]:
- node_id = ray.get_runtime_context().get_node_id()
- gpu_ids = ray.get_gpu_ids()
- return node_id, gpu_ids
- def execute_model_compiled_dag_remote(self, ignored):
- """Used only when compiled DAG is enabled."""
- import torch
- if not self.compiled_dag_cuda_device_set:
- torch.cuda.set_device(self.worker.device)
- self.compiled_dag_cuda_device_set = True
- output = self.worker.execute_model()
- output = pickle.dumps(output)
- return output
- except ImportError as e:
- logger.warning(f"Failed to import Ray with {e!r}. "
- "For distributed inference, please install Ray with "
- "`pip install ray`.")
- ray = None # type: ignore
- RayWorkerWrapper = None # type: ignore
- def initialize_ray_cluster(
- parallel_config: ParallelConfig,
- ray_address: Optional[str] = None,
- ):
- """Initialize the distributed cluster with Ray.
- it will connect to the Ray cluster and create a placement group
- for the workers, which includes the specification of the resources
- for each distributed worker.
- Args:
- parallel_config: The configurations for parallel execution.
- ray_address: The address of the Ray cluster. If None, uses
- the default Ray cluster address.
- """
- if ray is None:
- raise ImportError(
- "Ray is not installed. Please install Ray to use distributed "
- "serving.")
- # Connect to a ray cluster.
- if is_hip():
- ray.init(address=ray_address,
- ignore_reinit_error=True,
- num_gpus=parallel_config.world_size)
- else:
- ray.init(address=ray_address, ignore_reinit_error=True)
- if parallel_config.placement_group:
- # Placement group is already set.
- return
- # Create placement group for worker processes
- current_placement_group = ray.util.get_current_placement_group()
- if current_placement_group:
- # We are in a placement group
- bundles = current_placement_group.bundle_specs
- # Verify that we can use the placement group.
- gpu_bundles = 0
- for bundle in bundles:
- bundle_gpus = bundle.get("GPU", 0)
- if bundle_gpus > 1:
- raise ValueError(
- "Placement group bundle cannot have more than 1 GPU.")
- if bundle_gpus:
- gpu_bundles += 1
- if parallel_config.world_size > gpu_bundles:
- raise ValueError(
- "The number of required GPUs exceeds the total number of "
- "available GPUs in the placement group.")
- else:
- num_gpus_in_cluster = ray.cluster_resources().get("GPU", 0)
- if parallel_config.world_size > num_gpus_in_cluster:
- raise ValueError(
- "The number of required GPUs exceeds the total number of "
- "available GPUs in the cluster.")
- # Create a new placement group
- placement_group_specs = ([{"GPU": 1}] * parallel_config.world_size)
- current_placement_group = ray.util.placement_group(
- placement_group_specs)
- # Wait until PG is ready - this will block until all
- # requested resources are available, and will timeout
- # if they cannot be provisioned.
- ray.get(current_placement_group.ready(), timeout=1800)
- # Set the placement group in the parallel config
- parallel_config.placement_group = current_placement_group
|