123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- from dataclasses import dataclass
- from typing import (TYPE_CHECKING, Any, Dict, List, Mapping, Optional, Tuple,
- Union)
- import torch
- from loguru import logger
- from torch import nn
- from aphrodite.common.config import (DeviceConfig, ModelConfig, ParallelConfig,
- SchedulerConfig)
- from aphrodite.common.sequence import (IntermediateTensors, SamplerOutput,
- SequenceGroupMetadata)
- from aphrodite.common.utils import (is_pin_memory_available,
- make_tensor_with_pad)
- from aphrodite.modeling import SamplingMetadata
- from aphrodite.modeling.model_loader.neuron import get_neuron_model
- from aphrodite.multimodal import (MULTIMODAL_REGISTRY, BatchedTensors,
- MultiModalInputs)
- from aphrodite.task_handler.model_runner_base import (ModelRunnerBase,
- ModelRunnerInputBase)
- if TYPE_CHECKING:
- from aphrodite.attention.backends.abstract import AttentionBackend
- @dataclass(frozen=True)
- class ModelInputForNeuron(ModelRunnerInputBase):
- """
- Used by the NeuronModelRunner.
- """
- input_tokens: Optional[torch.Tensor] = None
- input_positions: Optional[torch.Tensor] = None
- input_block_ids: Optional[torch.Tensor] = None
- sampling_metadata: Optional["SamplingMetadata"] = None
- multi_modal_kwargs: Optional[Mapping[str, BatchedTensors]] = None
- def as_broadcastable_tensor_dict(
- self) -> Dict[str, Union[int, torch.Tensor]]:
- raise NotImplementedError("ModelInputForNeuron cannot be broadcast.")
- @classmethod
- def from_broadcasted_tensor_dict(
- cls,
- tensor_dict: Dict[str, Any],
- attn_backend: Optional["AttentionBackend"] = None,
- ) -> "ModelInputForNeuron":
- assert attn_backend is None
- return cls.from_broadcasted_tensor_dict(tensor_dict)
- class NeuronModelRunner(ModelRunnerBase[ModelInputForNeuron]):
- def __init__(
- self,
- model_config: ModelConfig,
- parallel_config: ParallelConfig,
- scheduler_config: SchedulerConfig,
- device_config: DeviceConfig,
- ):
- self.model_config = model_config
- self.parallel_config = parallel_config
- self.scheduler_config = scheduler_config
- if model_config is not None and model_config.get_sliding_window():
- logger.warning("Sliding window is not supported on Neuron. "
- "The model will run without sliding window.")
- self.device_config = (device_config
- if device_config is not None else DeviceConfig())
- self.device = self.device_config.device
- self.pin_memory = is_pin_memory_available()
- # Multi-modal data support
- self.multi_modal_input_mapper = MULTIMODAL_REGISTRY \
- .create_input_mapper(self.model_config)
- # Lazy initialization.
- self.model: nn.Module # initialize after load_model.
- def load_model(self) -> None:
- self.model = get_neuron_model(self.model_config,
- parallel_config=self.parallel_config,
- scheduler_config=self.scheduler_config)
- def _prepare_prompt(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, List[int], Mapping[
- str, BatchedTensors]]:
- assert len(seq_group_metadata_list) > 0
- input_tokens: List[List[int]] = []
- input_positions: List[List[int]] = []
- input_block_ids: List[int] = []
- seq_lens: List[int] = []
- multi_modal_inputs_list: List[MultiModalInputs] = []
- for seq_group_metadata in seq_group_metadata_list:
- assert seq_group_metadata.is_prompt
- seq_ids = list(seq_group_metadata.seq_data.keys())
- assert len(seq_ids) == 1
- seq_id = seq_ids[0]
- seq_data = seq_group_metadata.seq_data[seq_id]
- prompt_tokens = seq_data.get_token_ids()
- seq_len = len(prompt_tokens)
- seq_lens.append(seq_len)
- input_tokens.append(prompt_tokens)
- input_positions.append(list(range(seq_len)))
- assert seq_group_metadata.block_tables is not None
- block_table = seq_group_metadata.block_tables[seq_id]
- assert len(block_table) == 1
- input_block_ids.append(block_table[0])
- mm_data = seq_group_metadata.multi_modal_data
- if mm_data:
- # Process multi-modal data
- mm_kwargs = self.multi_modal_input_mapper(mm_data)
- multi_modal_inputs_list.append(mm_kwargs)
- max_seq_len = max(seq_lens)
- assert max_seq_len > 0
- input_tokens = make_tensor_with_pad(input_tokens,
- max_seq_len,
- pad=0,
- dtype=torch.long,
- device=self.device)
- input_positions = make_tensor_with_pad(input_positions,
- max_seq_len,
- pad=0,
- dtype=torch.long,
- device=self.device)
- input_block_ids = torch.tensor(input_block_ids,
- dtype=torch.long,
- device=self.device)
- multi_modal_kwargs = MultiModalInputs.batch(multi_modal_inputs_list,
- device=self.device)
- return (input_tokens, input_positions, input_block_ids, seq_lens,
- multi_modal_kwargs)
- def _prepare_decode(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- assert len(seq_group_metadata_list) > 0
- input_tokens: List[List[int]] = []
- input_positions: List[List[int]] = []
- input_block_ids: List[int] = []
- context_lens: List[int] = []
- for seq_group_metadata in seq_group_metadata_list:
- assert not seq_group_metadata.is_prompt
- seq_ids = list(seq_group_metadata.seq_data.keys())
- for seq_id in seq_ids:
- seq_data = seq_group_metadata.seq_data[seq_id]
- generation_token = seq_data.get_last_token_id()
- input_tokens.append([generation_token])
- seq_len = seq_data.get_len()
- position = seq_len - 1
- input_positions.append([position])
- context_lens.append(seq_len)
- assert seq_group_metadata.block_tables is not None
- block_table = seq_group_metadata.block_tables[seq_id]
- assert len(block_table) == 1
- input_block_ids.append(block_table[0])
- input_tokens = make_tensor_with_pad(input_tokens,
- max_len=1,
- pad=0,
- dtype=torch.long,
- device=self.device)
- input_positions = make_tensor_with_pad(input_positions,
- max_len=1,
- pad=0,
- dtype=torch.long,
- device=self.device)
- context_lens = torch.tensor(context_lens,
- dtype=torch.int,
- device=self.device)
- input_block_ids = torch.tensor(input_block_ids,
- dtype=torch.long,
- device=self.device)
- return input_tokens, input_positions, input_block_ids
- def make_model_input_from_broadcasted_tensor_dict(
- self, tensor_dict: Dict[str, Any]) -> ModelInputForNeuron:
- return ModelInputForNeuron.from_broadcasted_tensor_dict(tensor_dict)
- def prepare_model_input(
- self,
- seq_group_metadata_list: List[SequenceGroupMetadata],
- virtual_engine: int = 0,
- finished_requests_ids: Optional[List[str]] = None
- ) -> ModelInputForNeuron:
- # NOTE: We assume that all sequences in the group are all prompts or
- # all decodes.
- is_prompt = seq_group_metadata_list[0].is_prompt
- # Prepare input tensors.
- if is_prompt:
- (input_tokens, input_positions, input_block_ids, seq_lens,
- multi_modal_kwargs
- ) = self._prepare_prompt(seq_group_metadata_list)
- else:
- (input_tokens, input_positions,
- input_block_ids) = self._prepare_decode(seq_group_metadata_list)
- seq_lens = []
- sampling_metadata = SamplingMetadata.prepare(
- seq_group_metadata_list,
- seq_lens,
- # query_lens is not needed if chunked prefill is not
- # supported. Since neuron worker doesn't support chunked prefill
- # just use seq_lens instead.
- seq_lens,
- self.device,
- self.pin_memory)
- return ModelInputForNeuron(input_tokens=input_tokens,
- input_positions=input_positions,
- input_block_ids=input_block_ids,
- sampling_metadata=sampling_metadata,
- multi_modal_kwargs=multi_modal_kwargs)
- @torch.inference_mode()
- def execute_model(
- self,
- model_input: ModelInputForNeuron,
- kv_caches: Optional[List[torch.Tensor]] = None,
- intermediate_tensors: Optional[IntermediateTensors] = None,
- num_steps: int = 1,
- ) -> Optional[List[SamplerOutput]]:
- if num_steps > 1:
- raise ValueError(
- "NeuronModelRunner does not support multi-step execution.")
- hidden_states = self.model(
- input_ids=model_input.input_tokens,
- positions=model_input.input_positions,
- input_block_ids=model_input.input_block_ids,
- **(model_input.multi_modal_kwargs or {}),
- )
- # Compute the logits.
- logits = self.model.compute_logits(hidden_states,
- model_input.sampling_metadata)
- # Sample the next token.
- output = self.model.sample(
- logits=logits,
- sampling_metadata=model_input.sampling_metadata,
- )
- return [output]
- @property
- def vocab_size(self) -> int:
- return self.model_config.get_vocab_size()
|