123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- from functools import lru_cache
- from typing import List, Optional, Tuple, TypeVar
- import torch
- from loguru import logger
- from PIL import Image
- from transformers import PreTrainedTokenizerBase
- from aphrodite.common.config import ModelConfig
- from aphrodite.inputs.registry import InputContext
- from aphrodite.transformers_utils.image_processor import get_image_processor
- from aphrodite.transformers_utils.tokenizer import get_tokenizer
- from .base import MultiModalInputs, MultiModalPlugin
- cached_get_image_processor = lru_cache(get_image_processor)
- cached_get_tokenizer = lru_cache(get_tokenizer)
- # Utilities for image input processors
- _T = TypeVar("_T", str, int)
- def repeat_and_pad_token(
- token: _T,
- *,
- repeat_count: int = 1,
- pad_token_left: Optional[_T] = None,
- pad_token_right: Optional[_T] = None,
- ) -> List[_T]:
- replacement = [token] * repeat_count
- if pad_token_left is not None:
- replacement = [pad_token_left] + replacement
- if pad_token_right is not None:
- replacement = replacement + [pad_token_right]
- return replacement
- def repeat_and_pad_image_tokens(
- tokenizer: PreTrainedTokenizerBase,
- prompt: Optional[str],
- prompt_token_ids: List[int],
- *,
- image_token_id: int,
- repeat_count: int = 1,
- pad_token_left: Optional[int] = None,
- pad_token_right: Optional[int] = None,
- ) -> Tuple[Optional[str], List[int]]:
- if prompt is None:
- new_prompt = None
- else:
- image_token_str = tokenizer.decode(image_token_id)
- pad_token_str_left = (None if pad_token_left is None else
- tokenizer.decode(pad_token_left))
- pad_token_str_right = (None if pad_token_right is None else
- tokenizer.decode(pad_token_right))
- replacement_str = "".join(
- repeat_and_pad_token(
- image_token_str,
- repeat_count=repeat_count,
- pad_token_left=pad_token_str_left,
- pad_token_right=pad_token_str_right,
- ))
- image_token_count = prompt.count(image_token_str)
- # This is an arbitrary number to distinguish between the two cases
- if image_token_count > 16:
- logger.warning("Please follow the prompt format that is "
- "documented on HuggingFace which does not involve "
- f"repeating {image_token_str} tokens.")
- elif image_token_count > 1:
- logger.warning("Multiple image input is not supported yet, "
- "so any extra image tokens will be treated "
- "as plain text.")
- # The image tokens are removed to be consistent with HuggingFace
- new_prompt = prompt.replace(image_token_str, replacement_str, 1)
- new_token_ids: List[int] = []
- for i, token in enumerate(prompt_token_ids):
- if token == image_token_id:
- replacement_ids = repeat_and_pad_token(
- image_token_id,
- repeat_count=repeat_count,
- pad_token_left=pad_token_left,
- pad_token_right=pad_token_right,
- )
- new_token_ids.extend(replacement_ids)
- # No need to further scan the list since we only replace once
- new_token_ids.extend(prompt_token_ids[i + 1:])
- break
- else:
- new_token_ids.append(token)
- return new_prompt, new_token_ids
- class ImagePlugin(MultiModalPlugin):
- def get_data_key(self) -> str:
- return "image"
- def _get_hf_image_processor(self, model_config: ModelConfig):
- return cached_get_image_processor(
- model_config.model,
- trust_remote_code=model_config.trust_remote_code)
- def _default_input_mapper(self, ctx: InputContext,
- data: object) -> MultiModalInputs:
- model_config = ctx.model_config
- if isinstance(data, Image.Image):
- image_processor = self._get_hf_image_processor(model_config)
- if image_processor is None:
- raise RuntimeError("No HuggingFace processor is available"
- "to process the image object")
- try:
- batch_data = image_processor \
- .preprocess(data, return_tensors="pt") \
- .data
- except Exception:
- logger.error(f"Failed to process image ({data})")
- raise
- return MultiModalInputs(batch_data)
- elif isinstance(data, torch.Tensor):
- raise NotImplementedError("Embeddings input is not supported yet")
- raise TypeError(f"Invalid image type: {type(data)}")
- def _default_max_multimodal_tokens(self, ctx: InputContext) -> int:
- return 3000
|