123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- /******************************************************************************
- * Copyright (c) 2023, Tri Dao.
- ******************************************************************************/
- #pragma once
- #include <cuda_bf16.h>
- #include <cuda_fp16.h>
- #include <c10/util/complex.h> // For scalar_value_type
- #define MAX_DSTATE 256
- using complex_t = c10::complex<float>;
- inline __device__ float2 operator+(const float2 & a, const float2 & b){
- return {a.x + b.x, a.y + b.y};
- }
- inline __device__ float3 operator+(const float3 &a, const float3 &b) {
- return {a.x + b.x, a.y + b.y, a.z + b.z};
- }
- inline __device__ float4 operator+(const float4 & a, const float4 & b){
- return {a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w};
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template<int BYTES> struct BytesToType {};
- template<> struct BytesToType<16> {
- using Type = uint4;
- static_assert(sizeof(Type) == 16);
- };
- template<> struct BytesToType<8> {
- using Type = uint64_t;
- static_assert(sizeof(Type) == 8);
- };
- template<> struct BytesToType<4> {
- using Type = uint32_t;
- static_assert(sizeof(Type) == 4);
- };
- template<> struct BytesToType<2> {
- using Type = uint16_t;
- static_assert(sizeof(Type) == 2);
- };
- template<> struct BytesToType<1> {
- using Type = uint8_t;
- static_assert(sizeof(Type) == 1);
- };
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template<typename scalar_t, int N>
- struct Converter{
- static inline __device__ void to_float(const scalar_t (&src)[N], float (&dst)[N]) {
- #pragma unroll
- for (int i = 0; i < N; ++i) { dst[i] = src[i]; }
- }
- };
- template<int N>
- struct Converter<at::Half, N>{
- static inline __device__ void to_float(const at::Half (&src)[N], float (&dst)[N]) {
- static_assert(N % 2 == 0);
- auto &src2 = reinterpret_cast<const half2 (&)[N / 2]>(src);
- auto &dst2 = reinterpret_cast<float2 (&)[N / 2]>(dst);
- #pragma unroll
- for (int i = 0; i < N / 2; ++i) { dst2[i] = __half22float2(src2[i]); }
- }
- };
- #if __CUDA_ARCH__ >= 800
- template<int N>
- struct Converter<at::BFloat16, N>{
- static inline __device__ void to_float(const at::BFloat16 (&src)[N], float (&dst)[N]) {
- static_assert(N % 2 == 0);
- auto &src2 = reinterpret_cast<const nv_bfloat162 (&)[N / 2]>(src);
- auto &dst2 = reinterpret_cast<float2 (&)[N / 2]>(dst);
- #pragma unroll
- for (int i = 0; i < N / 2; ++i) { dst2[i] = __bfloat1622float2(src2[i]); }
- }
- };
- #endif
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- // From https://stackoverflow.com/questions/9860711/cucomplex-h-and-exp
- // and https://forums.developer.nvidia.com/t/complex-number-exponential-function/24696
- __device__ __forceinline__ complex_t cexp2f(complex_t z) {
- float t = exp2f(z.real_);
- float c, s;
- sincosf(z.imag_, &s, &c);
- return complex_t(c * t, s * t);
- }
- __device__ __forceinline__ complex_t cexpf(complex_t z) {
- float t = expf(z.real_);
- float c, s;
- sincosf(z.imag_, &s, &c);
- return complex_t(c * t, s * t);
- }
- template<typename scalar_t> struct SSMScanOp;
- template<>
- struct SSMScanOp<float> {
- __device__ __forceinline__ float2 operator()(const float2 &ab0, const float2 &ab1) const {
- return make_float2(ab1.x * ab0.x, ab1.x * ab0.y + ab1.y);
- }
- };
- template<>
- struct SSMScanOp<complex_t> {
- __device__ __forceinline__ float4 operator()(const float4 &ab0, const float4 &ab1) const {
- complex_t a0 = complex_t(ab0.x, ab0.y);
- complex_t b0 = complex_t(ab0.z, ab0.w);
- complex_t a1 = complex_t(ab1.x, ab1.y);
- complex_t b1 = complex_t(ab1.z, ab1.w);
- complex_t out_a = a1 * a0;
- complex_t out_b = a1 * b0 + b1;
- return make_float4(out_a.real_, out_a.imag_, out_b.real_, out_b.imag_);
- }
- };
- // A stateful callback functor that maintains a running prefix to be applied
- // during consecutive scan operations.
- template <typename scalar_t> struct SSMScanPrefixCallbackOp {
- using scan_t = std::conditional_t<std::is_same_v<scalar_t, float>, float2, float4>;
- scan_t running_prefix;
- // Constructor
- __device__ SSMScanPrefixCallbackOp(scan_t running_prefix_) : running_prefix(running_prefix_) {}
- // Callback operator to be entered by the first warp of threads in the block.
- // Thread-0 is responsible for returning a value for seeding the block-wide scan.
- __device__ scan_t operator()(scan_t block_aggregate) {
- scan_t old_prefix = running_prefix;
- running_prefix = SSMScanOp<scalar_t>()(running_prefix, block_aggregate);
- return old_prefix;
- }
- };
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- template<typename Ktraits>
- inline __device__ void load_input(typename Ktraits::input_t *u,
- typename Ktraits::input_t (&u_vals)[Ktraits::kNItems],
- typename Ktraits::BlockLoadT::TempStorage &smem_load,
- int seqlen) {
- if constexpr (Ktraits::kIsEvenLen) {
- auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_load);
- using vec_t = typename Ktraits::vec_t;
- Ktraits::BlockLoadVecT(smem_load_vec).Load(
- reinterpret_cast<vec_t*>(u),
- reinterpret_cast<vec_t(&)[Ktraits::kNLoads]>(u_vals)
- );
- } else {
- Ktraits::BlockLoadT(smem_load).Load(u, u_vals, seqlen, 0.f);
- }
- }
- template<typename Ktraits>
- inline __device__ void load_weight(typename Ktraits::input_t *Bvar,
- typename Ktraits::weight_t (&B_vals)[Ktraits::kNItems],
- typename Ktraits::BlockLoadWeightT::TempStorage &smem_load_weight,
- int seqlen) {
- constexpr int kNItems = Ktraits::kNItems;
- if constexpr (!Ktraits::kIsComplex) {
- typename Ktraits::input_t B_vals_load[kNItems];
- if constexpr (Ktraits::kIsEvenLen) {
- auto& smem_load_weight_vec = reinterpret_cast<typename Ktraits::BlockLoadWeightVecT::TempStorage&>(smem_load_weight);
- using vec_t = typename Ktraits::vec_t;
- Ktraits::BlockLoadWeightVecT(smem_load_weight_vec).Load(
- reinterpret_cast<vec_t*>(Bvar),
- reinterpret_cast<vec_t(&)[Ktraits::kNLoads]>(B_vals_load)
- );
- } else {
- Ktraits::BlockLoadWeightT(smem_load_weight).Load(Bvar, B_vals_load, seqlen, 0.f);
- }
- // #pragma unroll
- // for (int i = 0; i < kNItems; ++i) { B_vals[i] = B_vals_load[i]; }
- Converter<typename Ktraits::input_t, kNItems>::to_float(B_vals_load, B_vals);
- } else {
- typename Ktraits::input_t B_vals_load[kNItems * 2];
- if constexpr (Ktraits::kIsEvenLen) {
- auto& smem_load_weight_vec = reinterpret_cast<typename Ktraits::BlockLoadWeightVecT::TempStorage&>(smem_load_weight);
- using vec_t = typename Ktraits::vec_t;
- Ktraits::BlockLoadWeightVecT(smem_load_weight_vec).Load(
- reinterpret_cast<vec_t*>(Bvar),
- reinterpret_cast<vec_t(&)[Ktraits::kNLoads * 2]>(B_vals_load)
- );
- } else {
- Ktraits::BlockLoadWeightT(smem_load_weight).Load(Bvar, B_vals_load, seqlen, 0.f);
- }
- #pragma unroll
- for (int i = 0; i < kNItems; ++i) { B_vals[i] = complex_t(B_vals_load[i * 2], B_vals_load[i * 2 + 1]); }
- }
- }
- template<typename Ktraits>
- inline __device__ void store_output(typename Ktraits::input_t *out,
- const float (&out_vals)[Ktraits::kNItems],
- typename Ktraits::BlockStoreT::TempStorage &smem_store,
- int seqlen) {
- typename Ktraits::input_t write_vals[Ktraits::kNItems];
- #pragma unroll
- for (int i = 0; i < Ktraits::kNItems; ++i) { write_vals[i] = out_vals[i]; }
- if constexpr (Ktraits::kIsEvenLen) {
- auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_store);
- using vec_t = typename Ktraits::vec_t;
- Ktraits::BlockStoreVecT(smem_store_vec).Store(
- reinterpret_cast<vec_t*>(out),
- reinterpret_cast<vec_t(&)[Ktraits::kNLoads]>(write_vals)
- );
- } else {
- Ktraits::BlockStoreT(smem_store).Store(out, write_vals, seqlen);
- }
- }
|