123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374 |
- /******************************************************************************
- * Copyright (c) 2024, Tri Dao.
- ******************************************************************************/
- #include <c10/util/BFloat16.h>
- #include <c10/util/Half.h>
- #include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
- #include <cub/block/block_load.cuh>
- #include <cub/block/block_store.cuh>
- #include "causal_conv1d.h"
- #include "causal_conv1d_common.h"
- #include "static_switch.h"
- template<int kNThreads_, int kWidth_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
- struct Causal_conv1d_fwd_kernel_traits {
- using input_t = input_t_;
- using weight_t = weight_t_;
- static constexpr int kNThreads = kNThreads_;
- static constexpr int kWidth = kWidth_;
- static constexpr int kNBytes = sizeof(input_t);
- static_assert(kNBytes == 2 || kNBytes == 4);
- static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
- static_assert(kWidth <= kNElts);
- static constexpr bool kIsVecLoad = kIsVecLoad_;
- using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
- using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNElts, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
- using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, 1, cub::BLOCK_LOAD_DIRECT>;
- using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNElts, cub::BLOCK_STORE_WARP_TRANSPOSE>;
- using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, 1, cub::BLOCK_STORE_DIRECT>;
- static constexpr int kSmemIOSize = kIsVecLoad
- ? 0
- : std::max({sizeof(typename BlockLoadT::TempStorage), sizeof(typename BlockStoreT::TempStorage)});
- static constexpr int kSmemExchangeSize = kNThreads * kNBytes * kNElts;
- static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize;
- };
- template<typename Ktraits>
- __global__ __launch_bounds__(Ktraits::kNThreads)
- void causal_conv1d_fwd_kernel(ConvParamsBase params) {
- constexpr int kWidth = Ktraits::kWidth;
- constexpr int kNThreads = Ktraits::kNThreads;
- constexpr int kNElts = Ktraits::kNElts;
- static constexpr bool kIsVecLoad = Ktraits::kIsVecLoad;
- using input_t = typename Ktraits::input_t;
- using vec_t = typename Ktraits::vec_t;
- using weight_t = typename Ktraits::weight_t;
- // Shared memory.
- extern __shared__ char smem_[];
- auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
- auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_);
- auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
- auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_);
- vec_t *smem_exchange = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize);
- const int tidx = threadIdx.x;
- const int batch_id = blockIdx.x;
- const int channel_id = blockIdx.y;
- input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
- + channel_id * params.x_c_stride;
- weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
- input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
- + channel_id * params.out_c_stride;
- float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);
- // Thread 0 will load the last elements of the previous chunk, so we initialize those to 0.
- if (tidx == 0) {
- input_t zeros[kNElts] = {0};
- smem_exchange[kNThreads - 1] = reinterpret_cast<vec_t *>(zeros)[0];
- }
- float weight_vals[kWidth];
- #pragma unroll
- for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }
- constexpr int kChunkSize = kNThreads * kNElts;
- const int n_chunks = (params.seqlen + kChunkSize - 1) / kChunkSize;
- for (int chunk = 0; chunk < n_chunks; ++chunk) {
- input_t x_vals_load[2 * kNElts] = {0};
- if constexpr(kIsVecLoad) {
- Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(x), *reinterpret_cast<vec_t (*)[1]>(&x_vals_load[kNElts]), (params.seqlen - chunk * kChunkSize) / kNElts);
- } else {
- __syncthreads();
- Ktraits::BlockLoadT(smem_load).Load(x, *reinterpret_cast<input_t (*)[kNElts]>(&x_vals_load[kNElts]), params.seqlen - chunk * kChunkSize);
- }
- x += kChunkSize;
- __syncthreads();
- // Thread kNThreads - 1 don't write yet, so that thread 0 can read
- // the last elements of the previous chunk.
- if (tidx < kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
- __syncthreads();
- reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange[tidx > 0 ? tidx - 1 : kNThreads - 1];
- __syncthreads();
- // Now thread kNThreads - 1 can write the last elements of the current chunk.
- if (tidx == kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
- float x_vals[2 * kNElts];
- #pragma unroll
- for (int i = 0; i < 2 * kNElts; ++i) { x_vals[i] = float(x_vals_load[i]); }
- float out_vals[kNElts];
- #pragma unroll
- for (int i = 0; i < kNElts; ++i) {
- out_vals[i] = bias_val;
- #pragma unroll
- for (int w = 0; w < kWidth; ++w) {
- out_vals[i] += weight_vals[w] * x_vals[kNElts + i - (kWidth - w - 1)];
- }
- }
- if (params.silu_activation) {
- #pragma unroll
- for (int i = 0; i < kNElts; ++i) {
- out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i]));
- }
- }
- input_t out_vals_store[kNElts];
- #pragma unroll
- for (int i = 0; i < kNElts; ++i) { out_vals_store[i] = out_vals[i]; }
- if constexpr(kIsVecLoad) {
- Ktraits::BlockStoreVecT(smem_store_vec).Store(reinterpret_cast<vec_t*>(out), reinterpret_cast<vec_t (&)[1]>(out_vals_store), (params.seqlen - chunk * kChunkSize) / kNElts);
- } else {
- Ktraits::BlockStoreT(smem_store).Store(out, out_vals_store, params.seqlen - chunk * kChunkSize);
- }
- out += kChunkSize;
- }
- }
- template<int kNThreads, int kWidth, typename input_t, typename weight_t>
- void causal_conv1d_fwd_launch(ConvParamsBase ¶ms, cudaStream_t stream) {
- static constexpr int kNElts = sizeof(input_t) == 4 ? 4 : 8;
- BOOL_SWITCH(params.seqlen % kNElts == 0, kIsVecLoad, [&] {
- using Ktraits = Causal_conv1d_fwd_kernel_traits<kNThreads, kWidth, kIsVecLoad, input_t, weight_t>;
- constexpr int kSmemSize = Ktraits::kSmemSize;
- dim3 grid(params.batch, params.dim);
- auto kernel = &causal_conv1d_fwd_kernel<Ktraits>;
- if (kSmemSize >= 48 * 1024) {
- C10_CUDA_CHECK(cudaFuncSetAttribute(
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
- }
- kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- });
- }
- template<typename input_t, typename weight_t>
- void causal_conv1d_fwd_cuda(ConvParamsBase ¶ms, cudaStream_t stream) {
- if (params.width == 2) {
- causal_conv1d_fwd_launch<128, 2, input_t, weight_t>(params, stream);
- } else if (params.width == 3) {
- causal_conv1d_fwd_launch<128, 3, input_t, weight_t>(params, stream);
- } else if (params.width == 4) {
- causal_conv1d_fwd_launch<128, 4, input_t, weight_t>(params, stream);
- }
- }
- template<int kNThreads_, int kWidth_, int kChunkSizeL_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
- struct Causal_conv1d_channellast_fwd_kernel_traits {
- // The cache line is 128 bytes, and we try to read 16 bytes per thread.
- // So we have 8 threads per "row", so 32 or 64 elements in the channel dimension.
- // That leaves 4 columns per warp, and so 16 columns per block (assuming each block has 128
- // threads). Each each load is 16 x 32|64 elements in the L x C dimensions.
- using input_t = input_t_;
- using weight_t = weight_t_;
- static constexpr int kNThreads = kNThreads_;
- static_assert(kNThreads % 32 == 0);
- static constexpr int kNWarps = kNThreads / 32;
- static constexpr int kWidth = kWidth_;
- static constexpr int kChunkSizeL = kChunkSizeL_;
- static constexpr int kNBytes = sizeof(input_t);
- static_assert(kNBytes == 2 || kNBytes == 4);
- static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
- static constexpr int kNEltsPerRow = 128 / kNBytes;
- static constexpr int kNThreadsPerRow = kNEltsPerRow / kNElts; // Always 8 for now
- static_assert(kNThreadsPerRow * kNBytes * kNElts == 128);
- static constexpr int kNColsPerWarp = 32 / kNThreadsPerRow; // Always 4 for now
- static_assert(kNColsPerWarp * kNThreadsPerRow == 32);
- static constexpr int kNColsPerLoad = kNColsPerWarp * kNWarps;
- static constexpr int kNLoads = kChunkSizeL / kNColsPerLoad;
- static_assert(kNLoads * kNColsPerLoad == kChunkSizeL);
- static constexpr bool kIsVecLoad = kIsVecLoad_;
- using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
- };
- template<typename Ktraits, bool kHasSeqIdx>
- __global__ __launch_bounds__(Ktraits::kNThreads)
- void causal_conv1d_channellast_fwd_kernel(ConvParamsBase params) {
- constexpr int kWidth = Ktraits::kWidth;
- constexpr int kNThreads = Ktraits::kNThreads;
- constexpr int kNElts = Ktraits::kNElts;
- constexpr int kNWarp = Ktraits::kNWarps;
- constexpr int kNThreadsPerC = Ktraits::kNThreadsPerRow;
- constexpr int kLPerLoad = Ktraits::kNColsPerLoad;
- constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
- constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
- using input_t = typename Ktraits::input_t;
- using vec_t = typename Ktraits::vec_t;
- using weight_t = typename Ktraits::weight_t;
- // Shared memory.
- __shared__ input_t x_smem[kWidth - 1 + kChunkSizeL][kChunkSizeC + kNElts];
- const int batch_id = blockIdx.x;
- const int chunk_l_id = blockIdx.y;
- const int chunk_c_id = blockIdx.z;
- const int tid = threadIdx.x;
- const int l_idx = tid / kNThreadsPerC;
- const int c_idx = tid % kNThreadsPerC;
- input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
- + (chunk_l_id * kChunkSizeL + l_idx) * params.x_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
- weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr)
- + chunk_c_id * kChunkSizeC * params.weight_c_stride;
- input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
- + (chunk_l_id * kChunkSizeL + l_idx) * params.out_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
- int *seq_idx = !kHasSeqIdx ? nullptr : reinterpret_cast<int *>(params.seq_idx_ptr)
- + batch_id * params.seqlen + chunk_l_id * kChunkSizeL;
- input_t *initial_states = params.initial_states_ptr == nullptr || chunk_l_id > 0 ? nullptr
- : reinterpret_cast<input_t *>(params.initial_states_ptr) + batch_id * params.initial_states_batch_stride + l_idx * params.initial_states_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
- // The last L-chunk will also have enough info to write to final states, since it also contain a few x values
- // from the previous L-chunk.
- input_t *final_states = params.final_states_ptr == nullptr || chunk_l_id < gridDim.y - 1 ? nullptr
- : reinterpret_cast<input_t *>(params.final_states_ptr) + batch_id * params.final_states_batch_stride + l_idx * params.final_states_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
- #pragma unroll
- for (int l = 0; l < Ktraits::kNLoads; ++l) {
- input_t x_vals_load[kNElts] = {0};
- if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
- && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
- reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + l * kLPerLoad * params.x_l_stride);
- }
- reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
- }
- // Load the elements from the previous chunk that are needed for convolution.
- if (l_idx < kWidth - 1) {
- input_t x_vals_load[kNElts] = {0};
- if (chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) >= 0
- && chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < params.seqlen
- && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
- reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x - (kWidth - 1) * params.x_l_stride);
- } else if (initial_states != nullptr
- && chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < 0
- && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
- reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(initial_states);
- }
- reinterpret_cast<vec_t *>(x_smem[l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
- }
- __syncthreads();
- if (final_states != nullptr
- && l_idx < kWidth - 1
- && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
- // x_smem[0] contains element at index chunk_l_id * kChunkSizeL - (kWidth - 1)
- // So last few elements (index params.seqlen - kWidth + 1 + l_idx) are stored in x_smem[params.seqlen - kWidth + 1 + l_idx - (chunk_l_id * kChunkSizeL - kWidth + 1)][c_idx]
- *reinterpret_cast<vec_t *>(final_states) = reinterpret_cast<vec_t *>(x_smem[params.seqlen + l_idx - chunk_l_id * kChunkSizeL])[c_idx];
- }
- constexpr int kLPerThread = std::min(kChunkSizeL * kChunkSizeC / kNThreads, kChunkSizeL);
- static_assert(kLPerThread * kNThreads == kChunkSizeL * kChunkSizeC);
- constexpr int kNThreadsPerRow = kChunkSizeL / kLPerThread;
- static_assert(kNThreadsPerRow * kLPerThread == kChunkSizeL);
- // kChunkSizeL, kLPerThread, kNThreadsPerRow should be powers of 2 for simplicity
- static_assert((kChunkSizeL & (kChunkSizeL - 1)) == 0);
- static_assert((kLPerThread & (kLPerThread - 1)) == 0);
- static_assert((kNThreadsPerRow & (kNThreadsPerRow - 1)) == 0);
- static_assert(kNThreadsPerRow <= 32);
- const int row_idx = tid / kNThreadsPerRow;
- const int col_idx = tid % kNThreadsPerRow;
- float bias_val = params.bias_ptr == nullptr || chunk_c_id * kChunkSizeC + row_idx >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[chunk_c_id * kChunkSizeC + row_idx]);
- float weight_vals[kWidth] = {0};
- if (chunk_c_id * kChunkSizeC + row_idx < params.dim) {
- #pragma unroll
- for (int w = 0; w < kWidth; ++w) {
- weight_vals[w] = weight[row_idx * params.weight_c_stride + w * params.weight_width_stride];
- }
- }
- float x_vals[kWidth - 1 + kLPerThread];
- #pragma unroll
- for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) {
- x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]);
- }
- int seq_idx_thread[kWidth - 1 + kLPerThread];
- if constexpr (kHasSeqIdx) {
- #pragma unroll
- for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) {
- seq_idx_thread[i] = chunk_l_id * kChunkSizeL + col_idx * kLPerThread + i - (kWidth - 1) >= 0 ? seq_idx[col_idx * kLPerThread + i - (kWidth - 1)] : -1;
- }
- }
- float out_vals[kLPerThread];
- #pragma unroll
- for (int i = 0; i < kLPerThread; ++i) {
- out_vals[i] = bias_val;
- const int seq_idx_cur = !kHasSeqIdx ? 0 : seq_idx_thread[i + kWidth - 1];
- #pragma unroll
- for (int w = 0; w < kWidth; ++w) {
- if constexpr (!kHasSeqIdx) {
- out_vals[i] += weight_vals[w] * x_vals[i + w];
- } else {
- out_vals[i] += seq_idx_thread[i + w] == seq_idx_cur ? weight_vals[w] * x_vals[i + w] : 0.f;
- }
- }
- if (params.silu_activation) {out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i])); }
- }
- __syncthreads();
- #pragma unroll
- for (int i = 0; i < kLPerThread; ++i) { x_smem[col_idx * kLPerThread + i][row_idx] = out_vals[i]; }
- __syncthreads();
- #pragma unroll
- for (int l = 0; l < Ktraits::kNLoads; ++l) {
- input_t out_vals_store[kNElts];
- reinterpret_cast<vec_t *>(out_vals_store)[0] = reinterpret_cast<vec_t *>(x_smem[l * kLPerLoad + l_idx])[c_idx];
- if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
- && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
- *reinterpret_cast<vec_t *>(out + l * kLPerLoad * params.out_l_stride) = reinterpret_cast<vec_t *>(out_vals_store)[0];
- }
- }
- }
- template<int kNThreads, int kWidth, typename input_t, typename weight_t>
- void causal_conv1d_channellast_fwd_launch(ConvParamsBase ¶ms, cudaStream_t stream) {
- BOOL_SWITCH(params.seq_idx_ptr != nullptr, kHasSeqIdx, [&] {
- using Ktraits = Causal_conv1d_channellast_fwd_kernel_traits<kNThreads, kWidth, 64, true, input_t, weight_t>;
- // constexpr int kSmemSize = Ktraits::kSmemSize;
- constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
- constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
- const int n_chunks_L = (params.seqlen + kChunkSizeL - 1) / kChunkSizeL;
- const int n_chunks_C = (params.dim + kChunkSizeC - 1) / kChunkSizeC;
- dim3 grid(params.batch, n_chunks_L, n_chunks_C);
- dim3 block(Ktraits::kNThreads);
- auto kernel = &causal_conv1d_channellast_fwd_kernel<Ktraits, kHasSeqIdx>;
- kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- });
- }
- template<typename input_t, typename weight_t>
- void causal_conv1d_channellast_fwd_cuda(ConvParamsBase ¶ms, cudaStream_t stream) {
- if (params.width == 2) {
- causal_conv1d_channellast_fwd_launch<128, 2, input_t, weight_t>(params, stream);
- } else if (params.width == 3) {
- causal_conv1d_channellast_fwd_launch<128, 3, input_t, weight_t>(params, stream);
- } else if (params.width == 4) {
- causal_conv1d_channellast_fwd_launch<128, 4, input_t, weight_t>(params, stream);
- }
- }
- template void causal_conv1d_fwd_cuda<float, float>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_fwd_cuda<at::Half, float>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_fwd_cuda<at::BFloat16, float>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_fwd_cuda<float, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_fwd_cuda<at::Half, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_fwd_cuda<at::BFloat16, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_fwd_cuda<float, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_fwd_cuda<at::Half, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_channellast_fwd_cuda<float, float>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_channellast_fwd_cuda<at::Half, float>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, float>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_channellast_fwd_cuda<float, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_channellast_fwd_cuda<at::Half, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_channellast_fwd_cuda<float, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_channellast_fwd_cuda<at::Half, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
- template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|